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ABSTRACT

A computer program, called the Planetary Ephemeris Program (PEP), is being written
ot Lincoln Loboratory. The purpose of the program is to improve planetary and lunar
ephemerides using the results of radar and optical observations. In this report, we
derive the differential equations that are numerically integrated in PEP to determine
as functions of time the positions and velocities of the planets, of the Earth-Moon
barycenter and of the Moon, ond the partial derivatives ot these positions and ve-
locities with respect to initial conditions, masses and other parameters, Newtonian
theory with the usual unrigorous general relativistic corrections is employed. The
equations of motion and the equations for the partial derivatives with respect to ini-
tial conditions are presented in the form needed in the Encke's method cf integration
used in PEP.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office
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GENERATION OF PLANETARY EPHEMERIDES
ON AN ELECTRONIC COMPUTER

I. INTRODUCTION

A computer program, called the Planetary Ephemeris Program {(PEP), is being written at
Lincoln Laboratory. The purpose of the program is to iinprove planetary and lunar ephemerides
using the results of radar and optical observations. The procedure for improving ephemerides
is as follows. First, we integrate the differential equations of motion of the planets, of the Earth-
Moon barycenter and of the Moon using provisional values for the various parameters (such as
initial conditions and masses) appearing in the theory of gravitation and motion employed. We
also integrate the differential equations for the partial derivatives of the position and velocity of
the bodies with respect to these parameters. Then, for each radar and optical observation, we
calculate the theoretical values of the measurements made in the observation and the partial
| , derivatives of these theoretical values with respect to the parameters. Using the differences be-

iween the observed and theoretical values of the measurements, the errors of the measurements
and the partial derivatives of the theoretical values of the measurements, we form the normal
equations and solve them to get corrections to the parameters. With the adjusted parameters,
we reintegrate the equations of motion and the equations for the partial derivatives; applying

the results of these integrations, we again form the normal equations and solve them to get fur-
ther corrections to the parameters. This process is repeated until we obtain convergence. Us-
ing the parameters thus obtained in the integration of the equations of motion, we generate ephe-
merides which best agree with the observations in a least=sguares sense.

In this report, we present derivations of the foimulas used in PEP to determine as functions
cf time the positions and velocities of the planets, of the Earth-Moon barycenter and of the Moon,
and the partial derivatives of these positions and velocities with respect to the various param-
eters. In a second report, we will describe the derivations of the formulas used in the compari-
son of theory and observation and in the least-squares analysis parts of the program. In a third
report, we will present the documentation of the computer program itself.

In deriving the equations in this report, we employ Newton's theory of gravitation and motion
with the usual unrigorous general relativistic corrections. Since one of our purposes in analyz-
ing radar and optical observations with PEP is to test general relativity, the equations of motion
employed shouild be derived in strict accordance with .I. principles of this theory. As explained
in Sec. iV-C, the equations of motioii of the general relativistic N-body problem have been derived
in principle; it is only necessary to learn the derivation and to put the equations in a form amen-

' able to the generation of ephemerides. The equations will resemble the Newtonian equations

with rigorous rather than unrigorous general relatlivistic corrections. The rigorous general

relativistic treatment will be presented in a subsequent report.
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In PEP, the position and velocity of a planet, of the Earth-Moon barycenter or of the Moon
are determined as functions of time by numerically integrating the Encke differential equations
for these quantities, with the positions of perturbing planets being determined during the integra-
tion from an input magnetic tape. The partial derivatives of position and velocity with respect to
masses and other parameters (not initial conditions) are determined as functions of time by nu-
merically integrating the difievential equations for these quantities, while those with respect to
initial conditions are determined as functions of time either by assuming that they are equal to
the partial derivatives of position and velocity with respect to initial conditions in the elliptic or-
bit osculating to the true orbit of the body at the initial time, or by numerically integrating the
Encke equations for these quantities.

We feel that numerical integration on an electronic computer using Encke's method can yield
centuries of planetary and Earth-Moon barycenter ephemerides of the accuracy required by the
observations to which the ephemerides must be fitted. In the case of the Moon, however, nu-
merical integration of Encke's equations might not yield an ephemer:is accurate for centuries,
although it certainly would have the required accuracy for decades. Thus, we would have to
manipulate the equations further into a form that would yield accurate results for centuries of
numerical integra.ti.on'.r

We have not used the traditional method of obtaining planetary motions by expansions in series
for a number of reasons. First, the higher accuracies we require necessitate a higher-order
perturbation theory and many more terms in the truncated series than were required when the
present ephemerides were generated. Further, the equations we numerically integrate are di-
rectly derivable .rom the theory of gravitation and motion employed, while many operations have
to be carried out to derive the series solutions, thus introducing the possibility of error. Finally,
it is easy to introduce additional forces in the numerically integrated equations, whereas the con-
sideration of the effect of additional forces on the series solutions requires much effort.

PEP could be expanded to numerically integrate the equations for the motion of the Earth
about its center of mass, in addition to the equations for the motions of planets around the Sun,
ofithe Earth-Moon barycenter around the Sun and of the Moon around the Earth. In this way, all
the present ephemerides of the motions in the solar system could be completely and rigorously
revised, instead of only revising the ephemerides of the motions of the center of masses of the
various bodies, assuming the present expressions for the rotation and precession-nutation of the
Earth. However, even if we assume these expressions, significant improvements in the ephe-
merides of the motions of the center of masses can be made.

Recent radar observations at Lincoln Laboratory and elsewhere of Mercury, Venus, Mars
and the Moon:t have much greater accuracy than optical observations of these bodies. However,
optical observations have the advantage of having been made over a period of several centuries.
Using both radar and optical observations to improve ephemerides takes account of the stated
advantages of both kinds of observations. In addition, the dimensionality of the space of observa-
tions is increased ‘o four over the two obtainable using only optical observations; that is, radar
observations of time delay and doppler shift give range and range-rate 1aeasurements in addition
to the two angular measurements given by optical observations.

{ These manipulations have since been performed and will be presented in: M. E. Ash, "Generation of the Lunar
Ephemeris on an Electronic Computer," Technical Report 400, Lincoln Laboratory, M.L.T. (24 August 1965).

1 The Sun and perhaps Jupiter have alsc been detected with radar, but the results of such observations are not yet
of the accuracy or nature needed in improving ephemerides.
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With PEP, the fact that fitting ephemerides to observational data is done by an electronic
computer and is completely automated implies that more accurate ephemertdes will be generated
than if traditional methods (largely dependent upon hand computation) were used, even with ex-
actly the same observational data as input. Of course, more observational data are available
now than when the present ephemerides were generated, even without counting radar observations.

In the process of improving ephemerides, we obtain improved values of the various param-
eters appearing in the theory (such as planetary and lunar masses); we also test the validity of
the theory employed. Some hypotheses which we are interested in testing are:

(1) Does the Sun have a detectable second harmonic in its gravitational
potential?

(2) Are the values. of the gravitational constant and the velocity of light
functions of time?

(3) Is there an advance of the perihelion of the orbit of Mercury and the
other planets as predicted by general relativity?

(4) Is ihe general relativistic expression for ihe time delay of a radar
signal passing near the Sun correct?1

(5) Can atomic time be identified with the proper time of general relativity?

The prediction of the advance of the perihelion of Mercury's orbit has been verified previously.
Since experimental results are supposed to be reproducible, and since we intend to check this
advance with more accurate data, the effort we make to do this is not without merit. In order
to test the general relativistic effect on tlie time delay of the radar signal, we need-gbservations
of Venus or Mercury at superior conjunction at the frequency of Lincoln's Haystack radar

(8 X 109 cps). These have not yet been made, but hopefully will be made in the next few years.

ENY
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II. ELLIPTIC MOTION

A. CHANGE OF COORDINATES

In Fig. 4, @ is the lengitude of the ascending node of an elliptic orbit, i is the angle of in-

‘1 clination of the orbital plane, and w is the argument of perigee. We wish to find the transfor-
N . . - = =

1‘ mation from the (x, y, z) coordinate system to the (X, ¥, Z) coordinate system, whose X-axis is

j pointed in the direction of perigee, whose y-axis is pointed in the direction of motion at perigee,

and whose Z-axis is perpendicular to the orbital plane.

H
.

Fig. 1. Euler ongles.

€ —4
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If we rotate the xy-plane about the z-axis through the angle 2, we obtain an (x',y',2') co-
ordinate system related to the original one by the equations

i

x cosQ +ysinQ

'=—xsinQ + y cos

z' =z

Rotating about the x'-axis through the angle i, we obtain

i x'"' = x'

) y'" = y' cosi+2'sini

N

" = —y'sini + z' cosi
Finally, rotating about the z''-axis through the angle w, we see that

= x'' cosw +y'" sinw

= —x""' sinw +y' cosw

Nl <l R

=z||

The net result of these three transformations is seen to be

% = {cos cosw —sinQ sinw cosi) x + (sinQ cosw + cosQ sinw cosi)y
+ (sinw sini} z
§ = —(cosQ sinw + sinQ cosw cos i) x + (—sinQ sinw + cos R cosw cosi) y
+ (cosw sini) z
Z = (sin 2 sini) x — (cos Q sini) y + {cosi) z . (I1-1)

Equation (1I-1) is an orthogecnal transformation, so its inverse trangsformation is given by
the matrix which is the transpose of the above matrix. Thus, we have
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= (cos Q cosw ~sinQ sinw cosi) X —(cosQ sinw + sinQ cosw cosi) §
+ (sin sini) z
y = (sinQ cosw + cosQ sinw cosi) X + (—sinQ sinw + cos Q cosw cosi) ¥
—(cos @ sini) Z
z = (sinw sini) X + (cosw sini) 7 + (cosi) z . (11-2)

These formulas agree with those given in Ref. 2.

B. DETERMINATION OF POSITION AND VELOCITY AT A GIVEN TIME
FROM ORBITAL ELEMENTS

The differential equation system

2.2 j
dy° .y .
e i=1,2,3 (11-3)

where p> 0 and p = '\/(yi)z + (y2)2 + (y3)2, represents the motion of a body traveling in a conic
section. We shall assume that this conic section is an ellipse.

The various parameters used to describe elliptic motion are:

a = semimajor axis
e = eccentricity (0 g e < 1)
i = orbital inclination (0 £ i< 180°)
Q = longitude of the ascending node (0 £ @ < 360°)
= argument of perlgee, measured along the orbital plane from the ascending
node (0° £ w < 360°). (Note: the longitude of perigee is the quantity
o=+ w )
lo = initial mean anomaly at time to (0° f'o < 360°)
£ = mean anomaly at time t (0° £ 2 <360°)
f = true anomaly at time t (0° < £<360°)
u = eccentric anomaly at time t {0° £ u<360°)
n = mean motion
p = semilatus rectum

The quantities (a, e, i, Q, w, ! ) are the elements of the elhptlc OI‘blt and, along with the time,
completely determine the posmon and velocity (y1 y y y y ¥ ) in the orbit.

Let (%,¥) be the Cartesian coordinate system in the orbital plane whose X-axis points ia the
direction of perigee and whose ¥-axis points in the direction of motion at perigee. The following

equations are derived in Ref. 3 (the formula numbers in square brackets are those la the reference)

2 1

Gh2+ 2 e P =i 6, 41) (11-4)
p=alt—e) (11-5)
P = IyecosT [44] (I1-6)
p=a(l—e cosu) (51] (I1-7)
n=pl/2 4732 [43] (I1-8)
t=1¢ +nlt—t) {50] (II-9)
6
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=u-—e sinu (49]) (I1-10)

f 1te u
tan—z- =J1-% tanE [52] (11-11)
' X = a{cosu — e) (54] (11-12)

3= aw1- el sinu [55] . (I1-13)

These are the basic formulas which we shall assume {o be known. Differentiating (II-9) and
(I1-10) with respect to time, we find that

n= g—e=(1—e<:osu) %}1
19

dt

Thus,

du _ na -

a - 3 . (I1-14)
Equations (II-12), (II-13) and (1I-14) together give

%= -22 sinu (11-15)

p
- _ na2 N1 = e2
Y= _—p— cosu . (II-ié)

Suppose we are given (a, e, i, Q, w, 20), and we wish to find (yi, y2, y3, )"1, }"2, 5/3) at time t.
Equation (II-9) determines the mean anomaly £ at time t, from which Kepler's equation (II-10)
\solved by iteration) gives the eccentric anomaly u at time t. Then, formulas (II-7), (II-12),
(I1-13), (II-15) and (II-16) determine %, 7, X, ¥ at time t. If we define

b,y =cosQ cosw —sinQ sinw cosi’

b12 = —-cos sinw —sinf cosw cosi

b21 =sinQ cosw + cos sinw cosi

b22 = —sin{ sinw + cosQ cosw cosi

b31 = sinw sini

b32 = cosw sini (11-17)

we finally obtain, by (II-2),
Peb, Ttb, 7
i1 j2
1,2,3 . (IL-48)

i
[}

yJ b x+bJ

C. DETERMINATION OF ORBITAL ELEMENTS FROM POSITION
AND VELOCITY AT A GIVEN TIME

Suppose we are given (yi, yZ, y3, ji, yz, &3) at time {, and are required to find (a, ¢, i, €, w, 20)

?

with ﬂo being the mean anomaly at time to'

[
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We define
p% = rh? + 5B + 0P
vi = gh? 6P ) .
7.v=yiteyit ey (11-19)
Then the vis viva integral (II-4) immediately determines one of the elements:

- [ -
T A (11-20)

= —v

Differentiating (II-7) with respect to time, we obtain
) 2 .
dp du _ na e sinu

ac ae simnu at = )

by (1I-14). Since

dp _p- ¥
dat p ’
this gives
. _p.-V
e sinu = =~——- , (I1-21)
na

Further, (I1I-7) can be put in the form
ecosu=1-2 . (I1-22)
a

The simultaneous solution of (II-21) and (I1I-22) determines e and u. The mean anomaly lo at
time to is then found from Kepler's equation (II-10), and formulas (II-12) through (II-16) deter-

mine X, ¥,%,y. Solving (II-18) for the bjk, we have

1 jo . J=
by = —r——== W¥-3'p)
Xy -%3)
j=1,2,3
1 - =
b, = —/——— (y9% — yI%)
¥ oEy-%9)
which can be put in the form
- Jgcosuy _ .j sinu
biy = y(2222) =y EER)
. . . i=1,2,3 . (I1-23)
bj2=yJ sinu +5’_] cosu —e

p«/i—ez r1a~)fl—e2 J

These formulas agree with those inRef. 4, in whichv it t was used as thetime variable instead of t.
By means of the above methods we can thus determine a, e, {5, and bjk (=1,2,3; k=1,2)
given the position and velocity(yi, yz, y3, }"1, 572, y3) at time t. From these quantities, we can then

determine the values of(y1, yz, y3, 5'1, y'rz, 93) atany time from the formulas given in Sec. II-B above.

To determine i, 8 and w, we must solve (II-17). First, we have \
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sl 2
sini= /b 32

31
0°gig 180° . (I1-24)
cosi=b,,b,, ~byrb,,
Further, if i 7= 0° or 180°, we see that w is determined by the relations

b N

sinw = 21
by’ + b,
f 0° < w<360° . (1I-25)
COS @ = —— P32
b?:z'l + b322 J

Finally, we see that @ is determined by the relations

sinQ = b21 cosS w —bzz sinw

0°L 2 <360° . (I1-26)
cosf = b11 COoS w —b12 sinw

If i = 0° or 180°, the equations in (II-17) assume the form

b“=cos(52=*:w) b22=icos(9iw)
b, = —sin(w * Q) by, =0 '
b21=sin(9=¥:w) b32=0

where the-plus sign of the = symbol is to be used if i = 0°, and the minus sign is to be used if
i= 180°. Thus, € and w are indeterminate when i = 0° or 180°. We might make the conven-
tion that when i = 0° or 180°, we set = 0 and determine w by the relations

CoSw = b“
sinw = —b12 . (11-27)

D. PARTIAL DERIVATIVES OF POSITION AND VELOCITY
WITH RESPECT TO ORBITAL ELEMENTS

Regarding the position and velocity (yi, yZ, y3, yi, 5'2, 5'3) at time t as functions of the orbital
elements (a, e, i, Q, w, lo), v.e derive the following equations.

. . . N

oyl _yd 33l
30 S w7 T

. L j=1,2,3 ([[-28)
ayd _ 4 _1+3eX(t“t°) + ot —t) b3 —b A1-ct%
2a y 2a 2ap 2p j1 > j2

1—8 /
oy} Ly - € b o, ¥isinu
e T 2 v n
= i=123 ({1-29)

) ] = . b.,aX cosu e =
y- =y—(acosu+exsmu\+ i +b.2(ﬁ-_eb_'_2)
de n |/ P JeNp  4_¢
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oy _ 33
ao n

j J . . j= 1! 2'3 (11'30)
9y° _ y'ex , a y 2 2
_%'__ + 2 p —L _+ Db N1I—-e"%
] np p < 1 j2 >

o ) 1—e2
ay1 3 gﬁ 3 W
=T (sinQ) y 3T © (sinQ) y

2 .2

3 i) .3
%li— = —(cos Q) y ay—1 = —(cos Q) ¥y { (I1-31)
ay° 3y° :
% = (sinw cosi) X % = (sinw cosi) X
+ (cosw cosi) ¥ + (cosw cosi) ? ]
ayl 2 oyl 2]
30 - Y 30 - Y
ay’ _ A 05> _ .1} (II-32)
L e~V
gﬁ:o 8}"3 =0
EX9) FIN J
ayj e T h S
o - Pj2X BT
j=1,2,3 . (11-33)

oyl L s o
Bw - Pj2X " PyeY
To show the validity of the above formulas, we note that in (II-18) the b.k are functions of
i, 2, w, and X, Y, 5'{', y are functions of a, e, 20, t. Therefore, we first differentiate (I[-17) with
respect to i, €, w, and find that

9b,
31 ° sin @ sinw sini = (sin Q) b31
é)b12
5T © sinQ cosw sini = (sin Q) b32
8b21
3 ° —cos § sinw sini = —(cos Q) b31
6b22
31 = —cos Q cosw sini = —{cos Q) b32
9byy .
— = sinw cosi
i
b
‘?2 = cosw cosi (I1-34)
o1
10
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11

2
ab

Q

12

]
ab

Q

21

9

ab

Q

22

9
ab

Q

34

a
ab

Q

32

9
b

Q

11
ow

3b

12

9

b

w

21
dw

ab

22

a

b

w

31

]

b

w

32

ow

—~sSin Q2 cosw —cos & sinw cosi = —b21

sinQ sinw —cos 2 cosw cosi = —b22

b

cos 2 cosw —sin sinw cosi 11

—cos @ sinw - sin cosw cosi = b12

—cos 2 sinw —sinQ cosw cosi = b12

—cos cosw +sin sinw cosi =—b“

—sinQ sinw + cos cosw cosi = b22
—~sinQ cosw —cos Q sinw cosi = —b21

cOS w sini = b32

—sinw sini = —b31

{I1-35)

(II-36)

Then, (II-34) through (II-36) and (II-18) together show that formulas (II-31} through (II-33) are

valid.

Next, by (II-8), we have

3 n 2 9f _du _ du
_'Z'E(t—to)_?ﬁ-aa ecosu z—
= ﬂ = .a—u -1 -— 8_u
0= Y 5o sinu — e ¢cosu 3¢
1=——azze=§-{l—l— e cosu ;)eu
o o o
By (II-7), these equations imply that
14
TSI it R

[+3]

an
oa

W
)

Further, (I[-9) and (II-10) give

(I1-37)
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du _a sinu
oe P

Q@
<

a

(<5
~
o]

From (II-7) and (II-38), it follows that
- - nae(t — to) sinu

ap = - B i _au = p - :‘,;
e (1 - e cosu) + ae sinu 5 - & 2 >
0 au aZe sin2 u
9P = _3 cosu + ae sinu = = —a cosu + ——————n0n
e ae P
0p Ju aze sinu
a—fg < ae sinu E = —'—p——— . (11'39)

Having obtained the above formulas, we use (II~12) to (II-16) to find the derivatives of X, J,

i,?with respect to a, e, lo.

X _ Y o ein U X 3X
T {cosu—e) —a sinu 32 -3 " 2 E(t to)
9X = —a—a sinu 22 =_a+_:1___sinu
de oe n
X . u _ X
== = —asinu 7 = = (II-40)
aco 820 n
ﬂ-=~]’1-—ezsinu+a'\)1—ezcosu8—u=—y-—él(t—t)
%a da a 2 a o]
ay ae sinu_ . li—ezcosu-aﬂ:— ey , ¥sinu
Jde 2 de 1_eZ n
1—-e
E%}L=a~/1—e?‘cosuaTu=%’- ; (I1-41)
o} o}
~ 2 . . 2 2 .
9X _ _a sinudn _2nasinu _na cosugu , nasinu dp
da p da p p da pz da
2
] 3 2 3n2a cosu(t—to) <[4 3nae sinu (t—to)
=Xl tat 2 P 2
2p 2p
. 3ex(t —t )] 3ny(t—t)
Zp'vi—ez
12
g Neing . Ryl ) T e —,.




2 2 2 = - -
, 8X _ —na cosu du , na_ sinu 3p _ ax cosu , X . . eX sinu
. se =7 p  se 2 e p 3 (a cosu _n‘)
ax na® cosu u , na’ sinu 3p_ a3.7 XeX
. ._a.__= __.____p _a-_. + R 31 = - + np H (1I-43)
(o P o] 2
. pNi—e
. 2 5 ' ,
§=a“ﬁ—e2cosu@+2na 1—e2cosu_na2 1-ezsinua_u_
da p 3a p p dJa
_ gg_Z«H —e2 cosu 3p
2 da
p
. 3 ?mza2 NE e2 sinu(t — to) - [4 3nae sinu(t - to)
=Y -5t D+ 2 ‘Y[Z" 2 ]
2p 2p
3eR(t—t )]  3nN1—elX(t-t)
= -3 i S ol _ o (11-44)
2a 2ap 2p
9y _na2 € cosu _ na’ «/—1 -- ¢ sinu au _ na’ N1 —e? cosu  3p
Je — > 0 de 2 de
p Ni1-e p

<]
=
[V
ey
|
[]
(o]
o
10}
=
[+
©
o]
j:o)
o
>
|
(4]
[3Y)
1]
yoe
o
[~
Le3]
=1
1
<
[¢]
<
-
|
[¢]
®|
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Equations (II-40) through (II-45) and (II-18) together show that formulas (1I1-28) through (II-30)

are valid.

E. PARTIAL DERIVATIVES OF ORBITAL ELEMENTS WITH RESPECT
TO POSITION AND VELOCITY

Regardmg the orbnal elements (a,e, i, Q,w,! ) at time t as functions of the position and
velocity (y y y y y ¥ ) at time t, we demve the followmg equations.

9a_ _ Zazxj
ay? p3
j=1,2,3 (II-46)
2.3
Aa_ 2a°y
d}'»'] I
oe _ sinu [Zi _ (- V) yJ] + yJ cosu (3._._1_)
ayJ na a p3 p p a

i=1,2,3 (II-47)

de _sinu [yl _(B- 93], 2py) cosu
na |'a m n
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i . . h] _
v} _ @yl _ylsinu 2-1 3nay(t — 1) ]
3 ep p a ps

D e———————

| §=1,2,3 (iI-48)

- {
P VU - WA o |
»
S
o]
(2]
(@]
1]
=
|
o
fremre——
(%)

i . v od . 2t -
o _ cosu-e [yJ - V)ya] _ 2py) sinu | 2137 = 1)

|
: i _ (%P b ab ab
Q___;(__ sinw + cosw> COSi+(b12—Q+b21 _1%
- oy oy 3y ay) ayd
ab db
- b“ ——-—2.2 —b?_2 ———1.1) sini , j=1,...,6 (11-49)
6y3 8y3

where (y',...,5% = (#',...,5%), and where the ab, /2y are given in (11-58) and (1I-59) below.

The same remarks apply to the following two sets of equations.

ab ab
a“’. = Si::li < 3.1 COSw — 3.2 sinw) , j=1,...,6 (I11-50)
ay? 2y’ oy
ab ab ob
-ng—.- = 2.1 CoS w — 2_.2 sinw ) cosQ — —1.1— cos w
ayl  \ay? ay? oy?
ob, .
- 13.‘ sinw) sinQ — g% cosi , j=4,...,6 | (11-51)
oyl )

Equaticns (J1-46) follow directly from formula (II-20). To derive (II-47) and (11-48), we
first differentiate (II-24) and (1:-22), obtaining

d(e sinu) _ yj _ (I;- V) yJ
.3 2z 3
oy na nap
i=1,2,3 (II-52)
desing _ vy} _ (@9
ayd na nag
afe cosu) _ g%_{ _lJ_
3yJ p ap .
. J - '1: 2; 3 . (11_53)
d(e cosu) _ zpyJ
ayJ B
For any variable «, we have
dle sinu) sinu e e cos u du
da da da
a(e cosu) _ 9€ _ . ainy AU
—Fa— = cosu o —esinu =2
which can be put in the form
de _ .. . 9(esinu) 9(e cosu)
5g - Sinu ==/~ tcosu ————
du _ 1 9(e sinu) _ ..~ 9(e cosu), -
Y = e [COSU ———a—a—— sSinu -———-aa 3 . (II 54)
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Equations (II-52) through (II-54) together imply the validity of formulas (II-47) and of the following

formulas.
du _ cosu Yi B9y _ ylsinu 2 -4
8y. nae J|a p3 ep p a

7. Wyl _ 2py? sinu
> ep

Let a be any variable. Differentiating (1I-9) a..d (II-10) with respect to @, we see that

?_f_Q+@_ (t —t ),_QL:_Z)_Q __3(e sinu)

du ou o} oo Ja da
where, by (II-8),

on . _3nga

14 2 ado

Formulas (II-48) then follow from (II-52) and (II-55) to (II-57).

Next, we differentiate (II-23) with respect to yJ and 5/3, obtaining

1 i .
83}{_1 = COSUu . _ykyJ cosu _ yk sinu 9a_ W
oy) p Okj o 2na’ gy
yksinu ykcosu du J=123
—_ ) + e ——J- 4 k=1,23
ay ? ’
abld: _sinu o _ 9k sinu 9a _ (yk sinu yk cosu) 3u
b " K ana® gyl p na /9y
b2 - 1 sinu - ykyj sinu jrk(cosu - e) Q_
E)yJ 4 — g2 p kj p3 Zna?' GyJ
+ (yk cosu _ X sinu)b_u
3 ma ) 5y
+ _yke sinu )"k [e(cosu——e) 4” 8e>
Z —_— ————— ———
pli—et "1 (1-éh ay .
[ ) = 1,2,3
. k=1,2,3
8bk'z . 1 <(cosu—e) PR yk cosu —e) 8a
ay?d ) -—-ez na kj Znaz 2y
+ (yk cosu _ yk sinu) du
p na 35/‘]
+ yke sinu yk [e(cosu -e) _ 1] de
na |~ ,, 2, ]
p(t —e7) (1-e7) oy J

Here, the Kronecker delta ékj is defined by
0 ifj#k

5, =
kj l1 ifj=k
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Differentiating-(I1I-24) with respect to yj (j=1,...,6), we see that

. &b, ab
cosi -2t = A sinw + 3.2 cos w
ay’ oy ay?d
) 3b ab ab ab
~sini2lo= b, —2.3+b22 —.--biz——z—.i—bz,l-—i.z— . (11-64)
oy oyl ay? 2y’ oy

Multiplying the first equation of (II-61) by cosi and the second equation by sini, and subtracting,
we obtain (II-49). Further, differentiating either the first or the second equation of (II-25)
yields (II-50). Finally, by differeniiating (1I-26) we see that

8b21 ab

cosﬂa—ﬂ. = ——— COSW — 2.2 sinw —(b,, sinw + b cosw)a—“’.
21 22
3y oy . oy oy
ab ab
—sin@ 3—93 = 4 cosw — —22 sinw = (by, Sinw + by, cosw) 2L . (11-62)
ay!  ay? ay? ay

Multiplying the first of these equations by cos @ and the second by sin £, and subtracting, we
obtain (II-51). Here, we use the fact that by (1I-17)

cosi= (b21 sinw + b22 cos w) cos  — (b“ sinw + b12 cos w) sin

F. CHECK OF ELLIPTIC ORBIT FORMULAS

The elliptic orbit formulas derived in the preceding sactions were used to write computer
subroutines needed in Encke's method for the numerical irtegration of the cquations of motion
and the equations for the partial derivatives with respect to initial conditions of a planct. Thesc
computer subroutines then enabled us to check the validity of the elliptic orbit formulas in the
following manner.

First, note that the position and velocity (y1, cees y6) in an elliptic orbit satisfy the dif-
ferential equations system

k 4

dy™ _ _k+3
a =Y
. kt3 k
ay = By y k=1,2,3 . (11-63)
G
k__k k+3 _ ki3 _
Yy =Y, y Y =Y, whent-to‘

Let (‘[3‘1, cee ,ﬁe) denote the elements (a,e, 1,8, w, Zo) of the elliptic orbit. Differentiating system
(II-63) with respect to gd, we obtain

dloy*/osd) _ ay**
dt 3BJ
ki3 /1] Kk 3 ¢ k
%Jﬁ@:ﬁz(&z Zy“ﬂ,_ﬁy_ k=1,2,3
t PP\ PT oy egd  opd i=1,...,6 (I1-64)
k Kk+3
k 9y k+3 9y
9 = o s ay — = o when t = to
apd  op! ap? ap? )
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Given the orbital elements, we calculated numcrically the quantities yk and ayk/apj (jk=1,...,6)
for selected values of time using the formulas of Secs. II-B and I[-D above. Also using these for-
mulas to determine the initial conditions yé{ and ay(}:/aﬁj {j,k=1,...,6), we numerically inte-
grated the 42 differential equations (I1-63) and (II-64). The results of the numerical integration
and the calculations from the formulas agreed to within the accuracy cxpected of the numerical
integration, showing the validity of the formulas in Secs. II-B and II-D. This was also a check
of the computer subroutines to calculate yk and E)yk/aBj (j,k = 1,...,6), and of the numerical
intcgration subroutine. (We had to write our own numerical integration subroutine, since there
was nonc available which used double precision arithmetic operations.)

Next, given the orbital elements, we calculated the position and velocity at the initial time
from the formulas in Sec.II-B. Then, using the formulas of Sec. II-C, we calculated the orbital
elements from this position and velociiy and observed that the final and starting orbital elements
agreed to within the roundoff error expected in the calculations.

Finally, given the orbital elements, we calculated the matrix (ayk/aﬁj) from the formulas
in Sec. II-D and the matrix (8Bj/ayk) from the formulas in Sec. II-E for selected values of time.
Multiplying these two matrices, we found that the result differed from the identity matrix to
within the roundoff error expected in the caiculations.

All the elliptic orbit formulas derived above are valid for all choices of the orbital elements
(a, e, i, 9, w,lo), except that son.--of the formulas in Sec. [I-E for t};(e mgtrix (8ﬁj/8yk) become
indeterminant for e = 0 or i = 0°, 180° uecause here the matrix (9y /8BJ) is singular. Now, the
only time that the formulas for (OBj/ayk) are used is when we are integrating the equations for
the partial derivatives of the position and velocity of a planet with respect to 1nitial conditions
using Encke's method, and we wish to change Encke orbits. It is not very probable that, at the
instant when the Encke orbit is changed, the orbital elements would be right at one of the critical
points. In the case of the integration of the planetary motions, this could never happen.
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III. NEWTONIAN EQUATIONS OF MOTION

A. TWO-BODY PROBLEM (PLANET-SUN) WITH PERTURBING FORCES

We wish to find the cquations of motion of a celestial body about a central body, with this

motion being perturbed by N other bodies {whose positions are known as functions of time) and

by forces dependent on the position and velocity of the given body relative to the central body.

[.et the
{1 <1< N)

subscript s denote the central body (s = Sun), p the given body (p = planet), and

the jth perturbing body. Let y denote the gravitational constant, and suppose that

1 2 3,. . . . : : - . . .
(x",x7, x7) is an inecrtial coordinate system. We make the {ollowing notational conventions:

xsk = coordinate of central body, etc.
x.k = .\:.k - xk = coordinate of j relative to s, so that \(k = --xk‘, ete.
js J s js 5j
r_. =r._ = distance between s and j, etc.
Sj js
kK _ . th o .
Fp = k' coordinate of additional force on p
Ms = mass of s, etc.
Then, by Newton's laws of motion and gravity, we have
a? s 3 Nk
M — - 'yMsMp:%— oYM Y Mj;lz-
ps j=1 js
\ k=1,2,3 (111-1)
dzx k xskp N x;;) ’ K
M —P = yMm ™ +yM M, + F
Pz e 3 T Vp o TTY T
ps i=1 jp J

By dividing the above equations by MS and Mp,

tion frem the second equation, we find that the

where the perturbing planet

respectively, and by subtracting the first equa-

cquations of motion of p relative to s are

g% kK M\ x
“ps_ p\ _ps k, 1 pk - -
— = —yMy (1+m~)_PT+n W rp , k=1,2,3 (111-2)
dt s’ r P
ps
term is given by
" N ow, w‘;) <
Q" = yM ), ml _13_ “Jr , k=1,2,3 (111-3)
. S r. Ir.
j=1 ip js

IXffects contained in_the (1/Mp) F;{ term in (I{I-2) determined in this report are

Rk

Sk

.k
If we let I
) C p

= general relativity effect [see {(IV-52)}
= second harmonic of the Sun [see (III-50}] .

denote forces acting on the planet in addition to those enumerated, (II[-2) becomes

k
M_\ X .
—oM (1 ; ML’) e 1~*;‘ . k=1,2,3 (1I1-4)
S rps P
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E} B. THREE-BODY PROBLEM (EARTH-MOON-SUN) WITH PERTURBING FORCES
) ‘} We wish to find the equations of motion of the Earth-Moon barycenter about the Sun and of
the Moon about the Earth, with these motions being perturbed by N planets (whose positions are
. known as functions of time) and by additional forces Fe and Fm acting on the Earth and Moon,
) \' respectively. We assume that these forces are expressible in terms of the relative positions
\,‘ ! and velocities of the Sun, the Earth and the Moon.
I Let the subscript s denote the Sun, e the Earth, m the Moon, and j (1 < j < N) the jth per-
turbing planet. Otherwise, the notation in this seciion is the same as in Sec. IlI-A above. New-
” ton's laws of motion and gravity then give
2.k k k N k ]
d’x X b X,
s _ es ms js
w2 - ™Me 3ty NN L M, 3
es ms j=1 js
dzxk xk % N xk
e . “se _me Jde s L gk Vx=4,2,3 . (-5
2 YM 3+mer3 +yZM.r3+MeFe k=12, (III-5)
es me j=1 je
dzxk % k xk N xk
m _ sm em im 1 k
dt?‘ —yMS r3 +7Mer3 +y E Mjr +_—Mm m
ms me j=1 jm )
Let the subscript c refer to the center of mass of the Earth-Moon system. Thus,
M, = Me + Mm ) '
k Ve k, Mm x . .
¥ M Fe M m d
c c
=1,2,3 . -
K.k My oy k=L2 (LII-6)
X SX . — e X
es (e M me
c
xk - xX + -l}/[—e xk
ms ~ “cs M _ “me
c J
By multiplying the second equation of (III-5) by Me/Mc and the third equation by Mm/Mc’ and by
adding the results, we obtain
2_k k k N k
ijxc = vM l\ﬂgxse+YM mesm+y Z M _M_exje
dtz s Mc r3 S Mc r3 i Mcr—3-
es ms j=1 je
M S\ 4 k. K
+ —NI_ :3— + —I\/I—C(Fe + Fm) » k= 1, 2, 3 . (III"?)
jm
By subtracting the first equation of (III-5) from (III-7), we see that the equatinns of motion of
the Earth-Moon barycenter relative to the Sun are
2 k k k
9 ¥es (H&) Mo Xes , Mm *ms
we s MM, 3 "M, 3
es ms
k, 4 pk,pk -
FECE PG 4 F) , k=1,2,3 (I1I-8)
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where

xk Mm le:n x.I;
= ™M Z VIJ —% M_ o3 .3
Tie jm is

Here we have used the fact that

M, M, M,
M, + M 35 = M (HVJ)

s Mc s Mc s
N[m M Mc
My, + Mg Mc=Ms M (1+TVI_S')

k=1,2,3

(1I1-9)

Next, to obtain the equations of motion of the Moon about the Earth, we subktract the second

equation of (III-5) from the third equation, with the result that

2.k k
d’x M x
me _ _ ¢ me k k 1 k 1
2 = 'yMs M ——r3 + BT+ 9T+ (——Mm Foa M
me
where
k k )
b4 X
k _ es ms
B 'YMs 3 3
Tes Tms
> k=14,2,3
N M k x.k
=M, Y o je
_3— -3
. T, r.
i=1 Jm e/ |

Effects contained in the [(4/M ) le

Rk

Sk

general relativity effect [see (IV-52)]

second harmonic of the Sun [see (III-50)] .

. . k
Effects contained in the [(1/Mm) F .

Fk) , k=123

(11I-10)

(III-11)

+ F )] term in (III-8) determined in this report are

- (1/Me) Fé{] term in {1II-10) Zetermined in this report are

Hk = second and third harmonics of the Eartk, and the second harmonic

of the Moon.

If we let F(l: and Frl; denote the forces acting on the Earth and Moon in addition to those enume::-

ated, (III-8) and (III-10) become

2.k 4 k )
s . oy <i+ﬂ<2) Me ¥es , Mm Fms), .k, gk
2 M M 3 M 3
di s y ¢ reg ¢ rio
r S 4 S (FS+ FX) k
c
2 k k
d™x M x
Me - _yM, S -2 4K \I/k+Hk+(M1—-Fk—M1-Fk)
dt sSr m ™ e °©
me J
21
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If we desire the equations of motion of the Earth-Moon barycenter tv have the appearance of

perturbed elliptic motion, we can write them in the form

2 k k
d™x M X . .
52 = —yMy (1+1\T°) 3 + AR5 ¥4 RE 4 S8
dt s’ r
CcS
1,k k -
+ Mc(re + Fm) , k=1,2,3 (I11-13)
where
k k k
M X M x X
k_ ., _c\{Zes _e’es _m _ms = -
A" = 'Ms (i + Ms) r3 M r3 Mc r3 , k=1,2,3 . (I1I-14)
cSs es ms

C. PLANETARY PERTURBATIONS

The magnitude of the acceleration relative to the Sun that the Sun gives to planet p is

M
1 .
YM (1 + ME) — . (1i1-15)
s’ r
ps
The magnitude of the acceleration relative to the Sun that planet j gives to planet p at its closest

approach to p (assuming that the Sun, p and j are in a straight line) is

My /g 1
yMs M—s <r—2- t—;f> (III-16)
P Is

where the plus sign .s used if j is between p and the Sun, and the minus sign is used if p is be-
tween j and the Sun [see (III-2) and (III-3)]. Using (III-15) and (III-16), the equations in (IV-52)
for the general relativity effect, the information in Table I, the fact that (yMS) =2.96 x 107*
AU3/day2, and the following discussion »f the Earth-Moon dipole {erm, we derived Table II.

According to (III-3), we can write the effect of the Earth and the Moon on a planet as

k k k k
M M X X M X x
k _ c e ep __ “es m [ “mp _ “ms
Cem *™Ms W [M_\ 373 )T M_\3 T3 ' (III-17)

S c\r r c \r
ep ‘es mp ms

The effect of a hypothetical body of mass Mc = Me + Mm at the Earth-Moon barycenter is

k I\/lc (Xé{p x(l:{s
QC = 'YMS Wq‘ r—3— - r—3 . (II1-18)
" \ep cs

We wish t» determine the dipole term
k k k
T = - -
=, e, - (II1-19)

According to (III-6), we can write
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TABLE |
PLANETS IN THE SOLAR SYSTEMT

(Note: The masses of the outer planets inciude those of their satellites.)

Mass Mean Period Inclination
Planet (Sun=1) | Distance (AU) | (years) | Eccentricity (deg)
1. Mercury 1.70 X ]0-7 0.387 0.241 0.2056 7.004
2. Venus 2.45% 107° 0.723 0.615 0.0068 3.394
3. Earth-Moon | 5 45 1976 1.000 1.000 0.0167 0
barycenter
4. Mars 3.20X 1077 1.524 1.881 0.0934 1.850
5. Jupiter 9.55% 1074 5.203 11.862 0.0484 1.305
6. Satumn 2.85% 1074 9.539 29.458 0.0557 2.490
—‘.
7. Uranus 4.37% 10" 19.18 84.01 0.0472 0.773
8. Neptune 5.18% 107 | 30.06 164,79 0.0086 1.774
9. Pluto 2.78X 107° 39. 44 247.69 0.2502 17.170
1See Ref.5.
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c cs c cs
/ Me rme Me 2 rme e (III 20)
v =r_ [142w ——_+(—) (—_) -
ms cs S MC Tog Mc Tos
where
3 xf xl
w = Z _me _cs (II1-21)
s r r
me " c¢s

with exactly similar equations holding with the subscript s replaced by p. According to Ref. 6,
we then have

o0
M_ ., r {
1 _ 4 Jil me
o L Pylwy) ('M"‘) (_r )
es cs ,o c cs
©0
M \¢ /r ¢
2 o
22 LY ot pw) (-ﬁe-) (rme) (II1-22)
ms cs ,_ c cs
{=0
where the P2 are Legendre polynomials,
1 /el ( 1)i(zz 2i)t 1-2i
_ 1 - — 2i)! =21
Pl2) =5 L w-nra=zm 2 (I1-23)
i=0

The first few Legendre polynomials are

- - =3 721
PoZ)=1 , PUZ)=2Z , Py2)=352"-3 |,

_5 53 3 2y =38 28 1552, 3 )
P(2)=32"-352 , PU2)=FZ 27+ 3 . (111-24)
From (III-21), we obtain
o
4 {
1 _ 1 Z Q (w)(Mm> rme)
3 - 73 3¢'"'s Mc rig
Tes Tes =0
0
M ¢ r 4
I S ¢ &) ([ me 1I-25
T L N Qg (Mc> (rcs) (1i1-25)
Tms Tes =0
where
Q,,(2) = ), Py (2)P, (2) P, (2) . (Ii1-26)
_ 1 2 3
a1+a2+a3-£
According to (III-24), we see that
15 .2

(1II-27)

W

Q30(Z) =1 ) Q31(Z) = 3Z R Q32(Z) = > zZ5 -
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Finally, in-formula (III-49), by substituting (III-25) and the exactly similar equations obtained

. ) by replacing the subscript s by p, and by ignoring powers of rme/ s and ro e/ rcp higher than
v the second, we see that

| k k

. k _ Mc Me Mm rme\2 1 l’xme ¥es 5 2 1

{ T oM, M, |\t T2 T Y T T 2 Vs T2

) s e e es’ r l'me cs :

T 2 \:k xk
-~ (I{“e) < [rme wo—P e w? %)” : (III-28)
cp r, me P cp p

The last column in Table II is then calculated using (III-28), Table I and the following ud-.d;s
Mean distance of Moon from Earth = 384,400km = 0,0026 AU

Mm 1

M_c =82.31 - 0.01245

M, Mm

M - 1— 3 =0.98785 . (111-29)

[ [

It can be seen that the effect of the Earth and Moon on a planet can be written as (III-418)
rather than (IlI-17), even in the case of Venus, because the entry in Table II represents the
maximum magnitude of the dipole term when the planet is closest to t'ie Earth, and this maxi-
mum will be much less at other points in the orbit. Further, the sign of the dipole term os-
cillates as the Moon orbits the Earth.

The largest satellite of Jupiter i5 Ganymede, and according to Ref.7 we have

mass of Ganymede _ _ 1
mass of Jupiter ~ 12,300

3

distance from Jupiter = 7.456 X 10" AU . (I1I-30)

Thus, (III-z8) implies that the maximum error in neglecting the displacement of Ganymede from
Jupiter in computing the perturbation force on Mars is

-17

I T%| = 1,45 x 10”17 AU/day?

which is three orders of magnitude less than the maximum effect of Pluto on Mars. In general,
we can conclude that it is quite accurate to assume that the mass of an outer planet-satellite
system is concentrated at the center of mass of the system vhen determining the effect of the
system on a planet.

The total mass of the minor planets (asteroids) is estimated to be about 3/10,000 that of the
Earth.8 it would be rather difficult to include the gravitational effects of these asteroids, except
for some of the larger ones, such as Ceres, Pallas, Juno and Vesta. But let us consider the
largest asteroid, Ceres. According to Ref.9, we have

mass of Ceres 14

mass of sun_ 3.32 X 10

mean distance from Sun = 2.767 AU

Thus, by (I1I-16), the maximum acceleration of Mars due to Ceres is

@ = 5.0 x 10™ 1% AU/day?
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which is less by an order of magnitude than the effect of Pluto on Mars.
The maximum acceleration relative to the Sun that a distant star { can give to a planet p of
distance A from the Sun is, by (III-46),
e . M™Ms (Mg/M) [( IS)?- _1]

£= 2
s M Ip

e W) (), 2o

2 r >
Teg fp/ lfp

N 2yM (Mf/Ms) A
3
Ts

Here we have ussumed that es = rfp + A. The nearest star is ai a distance of 4 light years =
2.52 X 105AU' from the Sun. Assuming that its mass is the same as the Sun's, we have

-20

@ = 3.70 X 107°" AAU/day?

where A ranges between 0.387 AU for Mercury and 39.44 AU for Pluto. To obtain the accelera-
tion of the Moon relative to the Earth due to the star f, we set & = 0.0026 AU. Since there are no
really massive stars in the neighborhood of the Sun, and since the effect of a stur on the accelera-
tion of a planet relative to the Sun goes down as the cube of the distance, we .an feel justified in
considering the solar system as a closed system in discussing the orbital motions of the planets.
The effect of the displacement of the Moon from the Earth in the equations of motion of the
Earth-Moon barycenter is given by the term Ak in (III-13). Inserting (III-25) in formula (III-14)

ang ignoring powers of (rme/rcs) higher than the second, we obtain

k k
M 2 P X
k., _)__e__rzl_( e) 4 |®me . _Xes 15 2 3 L
A= ( M/ M, M 7 |y W T (T vy =3 . (Ili~31)
CS r me cS
CcS
A simple calculztion gives
|a%] < 2 x 10710 AU/day? T (U-32)

so that it is important to retain this term in the equations of motion of the Earth-Moon barycenter.

Equations (III-4) for the motion of a planet in the case of a planet with satellites are to be in-
terpreted as the equations of motion of the center of mass of the planet-satellite system. The
error in these equations in representing the motion of the center of mass is given by a term simi-
lar to the term Ak of (III-14), Mercury and Venus have no detectable satellites, and the satellites
of Mars have very small mass; so this possible error is only of concern for the outer planets.
However, by (IIi-30) and (III-31), the error in ignoring the displacement of Ganymede from Jupi-
ter in the equations of motion of the center of mass of the Jovian system satisfies

|a%] < 10714 AU/day?

Further, the short period of revolution of Ganymede about Jupiter (7.15 days) and the long period
of revolution of Jupiter about the Sun (11.86 years) would tend to cause the values of A~ at various
times lo cancel each other. So, in general, we can conclude that (III-4) represents the motion of

the center of mass of a planet-satellite system in the case of an outer planet-satellite system.
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‘ D. SECOND HARMONIC OF THE GRAVITATIONAL POTENTIAL OF THE SUN

X Let (xi, xz, x3) be a Cartesian coordinate system with origin at the center of mess of a body
} B of mass M. Let dM be an element of mass of the body B. The gravitational potential outside

of B is then
‘ 12,3
Jx U=~y SﬁB R jltii '_i)'zi)(xs 55 (I11-33)
) “ Let r% = (x})? + (x%)% + (x°)%. We have
) 2%u 4 2%y + 2%u -0
8(x1)2 6(x2)2 3(X3)2
U N-Y—II_VI— for large r . (II1-34)

We introduce spherical coordinates (r, 6, ¢) by the formulas

x1=rsine cos ¢
x2=rsine sin ¢ 0r<», 0g¢<2r, 0O . (II1-35)
x3=rcose .

Because of (III-34), U can be expanded in spherical harmonics

0

n
P _ {cos0)
¥M M .
U=-22 4+ 20 ¥ ) (2, coshp+b sinhg) M ___ (I11-36)
n=1 h=0 r
where
n
P (Z)=P(2)=— 9 (224" n=0,1,2,
no n 2™ gz”
h
d'P_(Z)
P (7)= (122 — 0~ =0,1,...,n (I1-37)
nh azh
(see Refs. 10 and 41i). The first few Legendre polynomials Pn(Z) are given in (I[1-24).
Let us write
[ 3 ) 1/2
rlx -9 = lz () ~&) ]
j=1
r 3 _q1/2
r= Z (xJ)zl
.j=,1 J
3 q1/2
t=| Y (53)2] (II1-38)
=1
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According to Ref. 6, we then have

1.4 £yt -
TmoF cr O P (LI1-39)
£=0

where q is the cosine of the angle between the vectors r and L,

3 ..
q= Z z‘; % (I11~40)
i=1
By (III-33) this implies that
w.
v=-M_2 ¥ _r% STSSB Pl@ gdM( (I11-41)
n=1
Comparing (III-41) with formula (III-36), we see that
n
M Z (a,y, coshe +b , sinhg) P, (cos®) = —S‘SSB P (q) ¢mamy . (I11-42)
h=0

Since the origin of the coordinate system is at the center of mass of the body, we have

3 .
gﬁB Py(q) tM(p = - %) £ S“B gamg =0 . (111-43)
j=1

Thus, the summation in (III-36) can start with n = 2,
© n
= _YM _ vM . .
U= =t = Z (anh cosha+bnh sinhg)
n=2 h=0

P, {cos y)
_nh " (II-44)
n

If the body is symmetric about a line through its center of mass, and we choose the x3 -axis
to point along this line, (III-44) reduces to

<
J
u=-22 4+ 5 ;g P _(cos ©) (111-45)
n=2

where we have written Jn for a0 In the case of the: Sun, we thus suppose that the gravitational
potential is given by
U = _% + ‘)_’.I_VI_S E.S_ 2 (f_z. 2 é(ﬁ “_ 1] (111-46)
r r r Rs 2\r 2 -
where RS =6.96 X 105 km is the radius of the Sun, and the coefficient S2 of the second harmonic
of the Sun is to be determined by its effect on the motion of a planet. We may assume that the

3

x” -axis of symmetry of the Sun points along the axis of rotation of the Sun.

Let (Xi, XZ, X3) be the coordinate system with origin at the center of mass of the Sun in which

the equations of motion are expressed. We have
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3 ]
i {
x' = E CJ£X
=1
, j=1,2,3 (I11-47)
! 3
? Xj = C ¢
. L Cy
i (=4 /

where (CJI) is an orthogonal matmx Let (I‘1 F?‘ I‘ ) be the components of the force on a planet
- of mass Mp due to the Sun in the (X X X3) coordinate system. Since

F= -M grad U (IL1-48)

formulas (III-46) and (III-47) give
k

3
Fk__vMSMpX +~,MsMp Ry 2 iz . ‘{_k 15{2 c X_c 2 3
- 3 z T RZ T 2\ 3¢ 1 2
r r s 0=1
3
<Z 2t r> sl 0 keL23 (I11-49)

The force on the Sun due to the planet is minus (III-49). Since the equations in (III-4) are derived
by subtracting the equations of motion of the Sun from the equations of motion of the planet, the
term Sk in (1II-4) is [for use in (III-12) the subscript p should be replaced by c]

M
2
K YMS (1+Ms) Rs 2 SZ i\s 15 2 3
st = ———2———(r—) — I ( i) —3gC3k , k=1,2,3 (I11-50)
rps ps Rs p
where xk = Xk, and where
ps
3 [4
Xps
% Cay ?p_s. . (I1-54)
= p

We recall that 52 is the second harmonic of the Sun's gravitational potential and has the dimen-
sicns of a length squared, and that RS is the equatorial radius of the Sun. The quantities
Cy, (¢ =1,2,3) are determined in Appendix C.

E. HIGHER HARMONICS IN THE GRAVITATIONAL POTENTIALS

OF THE EARTH AND MOON

The purpose of this section is to derive the force on the Moon due to the Earth, .considering
terms up to the third harmonic in the Earth's gravitational potential and up to the second harmonic
in the Moon's gravitational potential.

We shall assume thal the Earth is symmetric about its axis of rotation. Let the coordinate
system (xi, xz, x3), with origin at the center of mass of the Earth, be referred to the true equinox
and equator of date, so that the x3 ~axis poinis along this axis of rotation. Then, by (III-45) and
(II1-24), we have
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yM YM_J -yM J
U=-— e, €2 (-3L cos’o - 1) + —2&3 —e3 (-— r0s> € — Es coqe) (I11-52)
T r3 2 2 r
where, by (III-35),
x3
cos O = < - (1I1-53)
Acccerding to Ref. 12, we have
J
—£ = 1.0827 x 107
R
e
J
3 = —2.4x 107 (111-54)
Re

where R = 63;8.1; km is the equatorial radius of the Earth.

Let (X, X%, X°) be the coordinate system referred to the mean equinox and equator of
1950.0, the reference system in which we are integrating the equations of motion. Chocsing
the origin of this coordinate system to be at the center of mass of the Earth, we can write

3 w
i ¢
xy = 121 Ajfx
L j=1,2,3 (I1I-55)
3
j_ ¢
X = Z Alj ple
2:1 /

where the orthogonal matrix (AJZ) is ngen in Appendix A. Then, by (II[-52) through (III-55) and
(I1I-48), the components of force (I" F2 1"3) on a particle-of mass M due to the Earth in the
coordinate system (X s X , X ) are

kK
Koo YMMET MM, ik 45 5 3
FYX) = 3 + X e (= cos™ 0 - -2-) - 34A,, cos e!
¥M _MJ k
e “31|X 35 3 15
+——g—' [-—r— (T cos 0-—-2'0056)
r
15 2 3 _
A3k (7 cos O — -2')] , k=14,2,3 . (111-56)

Suppose that B is an extended physical body of mass M (the Moon in our case), and let

(X , X , X ) be the coordinates of its center of mass. Let (E,1 52 §3) be the coordinates of a mass

element dM in B relative to the center of mass of B. By (IlI-56), the force FB on B due to the
gravitational field of the Earth has components

O G dM(g) | pk k -
Fi(0) = Sﬂg Fio o+ S = PR+ C (IL1-57)

where
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ck = S‘SSB (R + g - Frx))

S m——

We write
k _~k k. ~k
. Ch=C/+C,+Cy (III-58)
N
~ where
k, ,k k
- - Ci‘=—vMe§SS [X veo X 3] dM()
Blr(X +§) r(X)
Cy = yM_J, SSS (XX + 5 - GKx) ama
B
k _ k k
C3 =yM_J SSS [HHX + & —H(X)] dM(8) (II1-59)
e 3 B
where
3 o q1/2
(X - §) = [Z (x3+53)2]
j=1
k 3A,,cos0
Ky o X545 2 3 3k
A& (X)——s (—2' cos 9—2)——-—4——
r r
Koy . X5 35 3 15 Ba 15 2 3
HY(X) = r_6 (7 cos” © — = cos e) —? (7 cos O — E) . (III-60)
Equation (III-39) implies that
[
-1 _1 _nt £\t
X+d "¢ (=1 Pyla) ) (I11-61)
=0
where the Pf(q) are Legendre polynomials and where
- 3 1/2
r=| ) (xJ)Z]
.j=1
-3 1/2
t=| Y (53)2]
-j:i
S
) X_r % ) (LI1-62)
i=1

Since Pe(q) only contains even powers of q for ¢ even, and odd powers of q for { odd, expres-
sion (III-61) contains no square roots of the quantities (.51, 52, §3), only products and powers. In
fact, Pl(q) ;2 is a homogeneous polynomial in (gi, gz, 53) of degree ¢ with coefficients depending

on (X1/r, X%/r, X3/r). Equation (IlI-61) implies that
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o

1 -1 _ T 4 4
— =4 = (-1 Q ,q)¢
(X + E)n o :G né
Q) = 2, P, (a)...P, (@ (I11-63)

_ n
ai-i. . .+an—f

where Q (q)§ is a homogeneous polynomial in (51, §2, 53) of degree ¢ with coefficients depending
on (X1/r Xz/r X3/r).

If we insert the above expression for 1/r(X + ¢ )" into the integrands in (III-59), we obtain

k™M oy k, X
ci=—=% Y 5 ﬁg Ry, (&, ) dM(8)
r ool B

M J ®
cxe—22 7 4 (0 r¥e 5o
r 0=0 T B
yMJ, e
ck- ! ffﬁ RE &, &) am (11-64)
£=0

where the Ri}; (¢, (X/r)] are homogeneous polynomials in (gi, §2, §3) of degree { with coefficients
depending on (X1/r, X2/r, X3/r). Actually, the above series start with £ =1, because the

integrands in (III-59) are the differences of functions evaluated at (X + ¢ and X. Since (§1, 52, §3) =

(0, 0, 0) is the center of mass of the body,

ggg Ede(é) =0 , j=123 (III-65)

so0 we may assume that the series (III-64) start with £ = 2. The integrals fffB RX , dM (¢) involve
the moments and products of inertia of the body, while the integirals fffB deM (g) (¢ > 2) depend
on the higher moments of the body. We ignore these higher moments wluch, by the discussion

in Ref. 13, is equivalent to ignoring harmonics higher than the second in the body's (= Moon's)
gravitational potential. We can therefore assume that

™ ¢ k., X
— BSSB R 5 ) dM(8)
yM J2

ggg RE 5 amy

YM J ;
cf. &2 SSSB RS (6, §) aM(y . (LII-66)
r

The effect of the third harmonic of the Earth's gravitational potential in the force Fk(X) of

u

(II1-56) is of the order J /r Thus, to the accuracy to which we are working in this section,
we can assume that C and C k are zero, because the coefficieuts multiplying fl/r6 and 1/1'7 in
C and C will mvolve J and J times similar constants associated with the second harmonic
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of the Moon's gravitational potential. (The fact that C; and C;{ are no larger than the effect of
the fourth harmonic of the Earth was aciually checked by direct computation, but the calcula-
tions are too lengthy to reproduce in this report.) Finally, examining expression (1Ii-59) for
ck,
harmonic of the Moon's gravitational potential acting on the Earth (where the Earth is considered

and noting (III-33) and (III-48), we may assume that C,1 is minus the force due to the second

to be a point mass).

2, x3) be a co-

The Moon is approximately an ellipsoid with three unequal axes. Let (xi, X
ordinate system with origin at the center of mass of the Moon such that the x3-axis points to-
ward the north pole of the Moon (which is one of the axes of the ellipsoid), the xi-axis peints
along the axis of the ellipsoid pointed in the direction of the Earth, and the x™ -axis completes
the right-hand system. Let I."f be the moment of inertia of the Mogn vszrith?’respect to the xj-axis.
We may assume that the products of inertia with respect to the (x”, x, x”) frame are zero, so
that

3\

“S [E (s‘)z] MO =L, =123
B Lo

ggg fam@ =0, i#j
B

Let a, b, ¢ be the axes of the ellipsoidal Moon in the xi, xz, x> directions. According to Ref. 14,

b (111-67)

we have
b < = 1737.9 km
a—c¢c=1.09km
a-b=036kmn . (I11-68)
I
23 = 0.397
b°M_
I —1
3 2. 0.000420
i
1
I —1
3 1. 0.000628
T
2
L -1
—2=0.000208 . (111-69)
3

Lhe above values of the moments of inertia of the Moon (wnich determine the second harmonic
of the Moon's gravitational potential) were obtained from the observed shape and physical liura-
tion of the Moon. It is to be expected that in the near future the second and higher harmonics
of the Moon's gravitational potential will be accurately determined by placing an artificial satel-
lite in orbit about the Moon. ’

According to (I1I-24), (III-42) and (IlI-44), the second harmonic of the Moon's gravitational

potential is
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0, = =% patar Pamig

ij o .
= -3 [g. P gS gelamy -7 ), ﬁg (gJ)ZdM(a] :
Tl T ]

Equations (III-67) give

J
3 .
32
=7 X -
-5 3 i-(8)] ( 3 1)
Toj=1 14
3 .2
Using the faci that = (x3/r)° = 1, this can be put in the form
=1
3 .
2
_ Y 3 (x3 1
U= % L [i (T) "z]IJ
ro .
j=1
3 .
2
I EW ESA R} R
3 L [Z(r) 2] € =Tp

Introducing polar coordinates (III-25), the first line of (III- 70} implies that

T B0 costo s sinfe) sinl6 s 3 L costo AL +1 .
U, = 3 (5(I; cos™ ¢ +1, sin"¢) sin"@ + 3 I3 cos” 0 — (I, + I, + L)
1 3 2 1 3 . 2
- rY {[13_2(11_”2)] [z cos“® = 5] + 3 (I, —1,) cos 2¢ sin” @}

Comparing this expression with (I1I~37), (III-41) #nd (III-42), we see that

YM
U, = r_3m [250F,0(cos ©) +a,, cos2¢ P, (cos0)]

where

M _a,, =1

1
m?20 =13 =3 I+ 1)

- 4 -
M2z, = 7 Iy - 1)

which implies that

r—t
I

[—
I

o 1y = aMpay,

p—
I
—
]

3~ 1 = M (ayy —2a,,)

(III-70)

(III-71)

(III-72)

(II11-73)

(I11-74)

We shall use expression (III-70) for the second harmonic of the Moon's gravitational potentiai.

We have derived (III-72) through (III-74) so that we can determine improved values of the
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quantities (I2 -1,) and (13 ! 1) in (III-70) from a possible future publication of improved values
of a0 and ayse

Let (X1, X2 X3) be the coordinates of the center of mass of the Moon relative to the center
of mass of the Earth in the coordinate system in which we are integrating the equations of motion.
Let (x7,x, x3) be the coordinates of the center of mass of the Earth relative to the center of
mass of the Moon in the coordinate system used in formula (III-70). Then, the relation between
(Xi, Xz, %3} and (xi, xZ, %) is given by

3 w
= 3 ['4
xl= -} B.X
e=1
- i=1,2,3 (I11-75)
|
i ¢
X? = Z Bejx
t=1 ,

where the orthogonal matrix B . is determined in Appendix B.
Let C pe the components in the (X1 XZ, X ) coordinate system of minus the force due to
the second harmonic of the Moon's gravitational potential acting on the Earth (where the Earth

is considered to be a point mass). Then, by (11I[-48), (III-70) and (JII-75), we have

aU,
Ci{ =—Me k
ax
3
M
e XX 15 3
= I.—1 15p2 3D.B I-76
r4Z(J 1)[( =) - ”k] ( )
j=2
where
i 2 :
D, —-X- 7 B, XT ) (II1-77)
=1

Formulas (III-56), (III-57), (II[-58) and (III-76) combine to give that the force on the Moon due to
the Earth is

k
Fk - _yMeMmX 4 'YMeMm (Ee-)z _J_Z_ [ﬁ (1§ COSze _ _:_5_) —3A cos 6
m r3 I,2 r RZ T 2 2 3k
e
¢ Me¥m (—2)2 e E ——( D2 - 3) -3D.B,
x‘2 r M RZ [ 2 j ik
m m j=2

yMMm(R)3J3X_k3_5 5 1

+ > - == |5 > COS e—-—z-cose)
r R
e
15 2 3 _
—A3k(_2 cos @ — '2-)] , k=14,2,3 (I11-78)

where R and R are the radii of the Earth and Moon, and where we have assumed that C k.
C k. 0. The force Fé‘ on the Earth due to the Moon is minus the force on the Moon due to the

’
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k__rk
Earth, Fe = Fm

derived by subtracting the equations of motion of the Earth from the equations of motion of the
Moon. Thus, the Hk term in (III-12) is

Equaticas (1II-10) for the motion of the Moon relative to thz Earth were

k
M_ M R 2 X
k _ Vs _c e 2 t"me ,415 2 3y -
H" = —= 31 (r ) Z[r (Zcos 6—2)—,A3kcos€)]
r s me’ R me
me e
3 k
Rnye L L=Iy [Xne 45 2 3
* M R2 Z I s 3DjBJk
me’ M_R_ j=2 me
k -
R 3 J X
+ (_e) 3 [ me (35 cos’ @ 12 o5 o)
r 31ir 2
me’ R me
e
15 2 3 -
—A3k (—2- cos O - E)“ , k=1,2,3 (III-79)

where we have used the notation of Sec. III-B with xk = Xk, r =pr,andM =M _ +M . The
me me c e m

constants (Re, JZ,J3) and (Rm»IpIZ' 13) are given in {III-54), (I{I-68) and (III-69). (We must
evidently assume that Rm = b.) The matrices (Aij) and (Bi.) are determined in Appendices A
and B. By (III~53) and (I1I-77), the quantities cos © and Dj in (III-79) are

3 !
_ me
cos© = Z A312 =
t=1 me
3 o
D,= ) B,—2¢ , j=2,3 . (I11-80)
J 2=1 Jtrme

Table III is constructed using the expressions for the forces perturbing the motion of the
Moon relative to the Earth given in (III-14), (III-12) and (III-79).

TABLE 111

MAXIMUM ACCELERATIONS OF THE MOON RELATIVE TO THE EARTH (AU/DAYZ)
(Note: A constant acceleration of 10715 AU/day?2 wili move a body 1 km in 10 years.)

Due to Acceleration Due to Acceleration
Earth 1.33x107 Mars 3.45%107'2
Sun 1.55% 107 Jupiter 1.98x107"!
2nd harmonic of Earth 2.40X 10"]0 Saturn 7.05X 10-13
2nd harmenic of Moon 3.00% 072 Uranus 1a2x107
3rd harmonic of Earth 2.00X 10_“i Neptune 3.25X 10-15
Mercury 1.14x 10712 Pluto 7.53%107"7
Venus 1.80x1071°
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The higher harmonics of the Earth's gravitational potential are known quite accurately be-
cause of their effects on the motions of artificial Earth satellites. If the higher harmonics of
the Moon's gravitational potential are similarly determined by placing an ariificial satellite in
orbit about the Moon, the effect of both the second and third harmanics of the Moon can be .n-
cluded in the Hk term above. In this case, the second, third and fourth harmonics of the Earth,
the interaction between the second harmonics cof the Earth and Moon [the C; term in (1I11-66)),
and the effect of the terms in the gravitational potential of the Earth which arise from asym-
metries about the north-south axis (tesseral harmonics) can all be included.

The effect of tidal friction on the motion of the Moon is small, since it is estimated that the
increase in the sidereal duy as a result of tidal action is 7.2 X 10-4 sec per century.15 However,
the effect of tidal friction should be included in the equations of motion of the Moon, if harmouics
in «he gravitational potentials of the Earth and Moon higher than those considered in this report
are included in the equations of motion.
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IV. GENERAL RELATIVISTIC EFFECT

A. MATHEMATICAL FORMALISM OF EINSTEIN'S GENERAL THEORY
OF RELATIVITY

Euclidean n-space ‘Rn is defined as the set of all n-tuples (xi, ceey xn) of real numbers
xJ (j=1,...,n). An open ball of radius r about a point X, = (xg, e, x:) in 8" is the set of all
poinis x = (xi, ..., x") in®" such that »\/ s (xd - xg)2 <r. A manifold M" of dimension n is a
j=1

separable connected Hausdorff space such *hat zach point in M" has a neighborhood which is
homeomorphic to an open ball in 2% That is, each point p in M™ has a neighborhood U in M"
such that there is a one-to-one bicontinuous map f:U —~ B onto an open ball B in 2. The map

f puts a coordinate system on U in the sense thai 10 each point q in U is associated the co-

ordinates (x1, ey xn) = f(q). Suppose that 1”,1:U1 - B1 and i”Z:U2 - B2 are two coordinate systems

such that the intersection of U, and U, is not empty. Then the change of coordinates is given by
the map f, ° f1_1:131 - BZ' as sketched in Fig 2. A differentiable manifold of dimension n is a
manifold of dimension n which has a covering by coeor Jinate neighborhoods such that the co-
ordinate transformations are infinitely differeniiable. The manifc. is analytic if the coordinate

transformations are analytic.

Fig. 2. Coordinate systems on a manifold.

The simplest example of an n-dimensional manifold is Euclidean n-space itself. Examples
of two dimensional manifolds are provided by surfaces in Euclidean three-space, such as the
cylinder, torus and sphere. A manifold can be defined without any reference to a higher dimen-
sional Euclidean space. Roughl; speaking, one might imagine that a manifold is a space which
can curve back on itself in the large, Lut which locally looks like Euclidean space.

Let (xi, ..., X" and (yi, i yn) be two overlapping coordinate systems on a differentiable
manifold M? of dimension n. A tensor T contravariant of order p and covariant of order q is
expressed in these two coordinate systems in the form?

tSee Ref. 16 for definitions of these topological concepts.

} See Ref. 17 for a rigorous abstract definition of tensors on a differer’iable manifold.

Eaad




.
- Yo
-y

& =

e

B F Iy

LI

-
NS A
3

i

o

- TR v v
T:TV1 Vpdx1®...®dxq®—a§—®...® ‘L
1 q ax1 ox P
a,...a B B
1 1 3
T=s,' ,Pay ®.®d @2 @ % . 1V -1)
1°"Fq ay 1 oy P

Here, we use the Einstein summation convention in which repeated upper and lower indices are
summed. The ccmponents of the tensor T transform according to the tensor rule of trans-

formation:
o o . v, v oy o
st gt Ppax T axday T ey P (IV-2)
ﬁi"'ﬁ Vy-- ¥ [31 Bq By T
1 2 a9y ay * dx ax P

In the general tiieory of relativity, the space-time universe js imagined to be a four-
dimensional differentiable {or perhaps analytic) manifold. The gravitational potential in the
space-time universe is given by a symmetric hyperbolic covariant tensor of order two ds2 =
g}wdx*" ® dx”, called the metric tensor. Symmetric means that guv = 8pp, and hyperbolic means
that for each point of space-time universe there is a coordinate system (xo, xi, x%, x3) such that

ds? = dx’ @ ax’ — dx? @ dx?! - ax? @ dx? ~dx® @ ax° (IV-3)

at-that point.
Let (gaB) denote the matrix inverse to the matrix (g}w). The Christoffel symbols are then
defined by

e %g"‘f’ (agml . 285, agp,,) (1V-4)
g ax”  oaxt o

(see Ref. 18). If we think of the metric tensor g}w as being the gravitational potential, then we
should think of the Christoffel symbols as being the gravitational field. The Riemann curvature

tensor is defined by

r
a  _ wg pv A @ AR _
Rpwﬂ = _a.x_u- 87;_ + PPB I‘M I‘WI‘m . (IV-5)

We further define

= rB
Rrw Rwﬁ
= M
R=g Rw (IV-6)

(see Ref. 19).
It is then postulated that the gravitational potential in the space-time universe satisfies the

Einstein field equations

1
Ry, = 7 g,R = =T, (IV-7)

v v

where x is a consiant and where T}w is a tensor defined in terms of the distribution of matter
and energy in the space-time universe. Multiplying both sides of this equation by g}w, and

summing on p and », we see that
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R=xT . (IV-8)

If there is no matter at a given point of the space-time universe, then T}w - 0 and by (IV-7) and
(IV-8) the Einstein field equations become

Rp.u =0 (IV-9)

at this point.

The above equations involving the metric, Christoffel symbols and Riemannian curvature
can be expressed in more abstract differential-geometric terms. This abstract approach would
be appropriate for a discussion of the space~time universe in the large. For local discussions,
ihe formulation in terms of local coordinate systems is sufficient.

A curve, or world line, in the space-time universe M is a map v: [a,b] = M of an interval
[2,b] in the real numbers into M (see Fig.3). In a coordinate system (xo, xi, xz, x3) on a co-
ordinaie neighborhood U in M, the curve can be written in the form

xt = 'y*’(s) s se [a,b] . (IV-10)

The tangent vector to the curve is then

\ = % 8_p , (IV-14)
ox
A vector A = A“(O/axp) at a point is said to be time-like if gpy?\“)\y > 0, null if gwxpku = 0, and
space-like if gpv)\phv < 0. The path of a light ray through the space-time universe has null
tangent vector, while the path of a material body through the space-time universe has time-like
tangent vector. A curve in the space-time universe with space-like tangent vector has no physi-
cal interpretation.

An observer in the space-time universe follows a time-like world line y through the space-
time universe. Suppose that this observer possesses an atomic clock and that he defincs a sec-
ond of time to be a certain number of oscillations of this atomic clock. Theun, in traveling along
his world line y from the point y(a) to the point y(b) in the space-time universe. it is postulated

that the observer will see that the number of elapsed seconds is given by the proper time integral

O =1
[ 4 N )
|
»

Fig.3. Curve on a monifold.
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where C is a constant, dependent upon the specific chemical element whose atomic oscillations
run the atomic clock and upon the number of oscillations defined to be in a second. The above
integral depends only on the world line y and the graviiational potential A The world line de-
pends on whether the observer is accelerated, etc. Thus, it is only reasonable to postulate
(IV-12) for the rate of a clock for an ideal atomic clock, since the effect of impulses on the rate
of a mechanical clock would depend on the details of its construction.

Let ¥:{a,b] = M be a null or time-like curve in the space-time universe M. The l2ngth of
y is defined as

b , TR
- dx" dx
L(y) = ga gpv ds ds ds . (IV-13)

The curve v is a geodesic if L(y) is a minimum for all nearby curves joining y(a) and y(b) in M.
If the parameter s satisfies gw(dxp'/ds) (dx”/ds) = constant along the curve, then a null or time-
like geodesic satisfies the differential equations

2. B B
d"x B dx” dx
ds? * Fpu ds ds - ° (IV-14)

(see Ref. 20). It is postulated that the path followed by a particle of negligible mass through the
space-time universe, subject to no force except that due to the gravitational potential in the
space-time universe, is a time-like geodesic.

In order to employ the theoretical facade outlined above ir. concrete situations, we make the
following comments. First, in an inertial coordinate system (t, xi, xZ, x3) of special relativity
far removed from poaderable matter, the gravitational potential should assume the form

as? = cfat? — (axh)? — 1@ ? - ax? . (IV-15)
Here, c is the velocity of light, and dt2 is short for dt @ dt. In the spherical ccordinate system
(t, r, 0, ¢), defined by

t=1

1
X

r sin©® cos ¢
2 . :
X =rsin® sing

x3 =r cosO (IV-16)

the metric (IV-14) becomes

e ]
ds® = c2at® - dr® — r2de® — r% sin %0 d(pz . (IV-17)

Second, in a general relativistic coordinate system which closely approximates a Newtonian
inertial coordinate system, the Newtonian expression for the motion in a weak gravitational
potential U of a particle of small mass with velocity small relative to the velocity of light should
be approximately the same as the general relativistic expression. We therefore have approxi-
mately
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as? = (2 + 2u) @t? — (dxh? - (@)% - (@)% . (IV-18)

Here, we assume that U goes to zero at spatial infinity and that the Newtonian acceleration of
a particle 1s —grad U. ({The convention in Ref. 22 is that the Newtonian acceleration of a particle

is +grad U.) Using the fact that (IV-18) satisfies the Einstein field equations, a more exact ex~
2

2
pression for the metric is™”

das? = (% + 2U) at? — (1 -~ %—J) Haxh? + @x®)? + @d)?) . (IV-19)
C

B. MOTION OF A PLANET OF SMALL MASS IN THE GRAVITATIONAL
FIELD OF THE SUN

Let V be a coordinate neighborhood in the space-time universe containing an isolated

1

spherically symmetric body, and suppose that (t, x°, xZ, x3) are coordinates on V such that the

center of the body follows the world line given by xj = 0{j) = 1,2,3). The gravitational potential
on V may be wri'ten

2 _ i i, i i
ds” =g dt ® dt + goidt ®dx + giodx ®dt + gijdx ® dx . (IV-20)

Here, and in the following, we assume that Roman indices i, j, ... take on only the values 1,2, 3,
Since the body which generates the gravitational potential (IV-20) is spherically symmetric and

isolated, we may suppose that

(1) the gravitational potential is static, i.e., the components of the metric
tensor do not depend on the variable t;

(2) the line element (IV-20) does not change its form under a rotation of the
coordinate axes {x1, x2, x3);

(3) at a large spatial distance r = '\/ (xi)2 + (xz)2 + (:{3)2 from the body, (IV-20)
approaches the value (IV-15).

From these assumptions and the fact that outside the body the Einstein field equations (IV-9) are

satisfied, it follows that there is a coordinate sys.em (t,, x:, x,f, x,,%) on V such that outside

the body the metric tensor has components24

1
20! Rl ke 3

8y =0T T, —2a 2

(IV-21)

%

Here, the Kronecker delta éij is defined by (II-60), r, = J(x,g)z + (x,.%)2 + (x,::’)z, ¢ is the velocity
of light at a large spatial distance from the body, and « is a constant. Comparison of (IV-21)
and (IV-18) with U = —(yM/r,) shows that

a = y_l\_él_ (IV-22)
c
where vy is the gravitational constant, and M is the mass of the body. The constant & has the
dimensions of a length and is much smaller than the geometric radius of the body (in the case of
the Sun, o = 1.48km). In the spherical coordinate system (t,, r,, ©,, ¢,) defined in ternis of
(to, x,:‘, x,:%, xg) by equations similar to (IV-16), the metric (IV-21) becomes25
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ds? = (f*r*—za) Zar? — (;f—f—z-a) drZ—r2 (d0Z +sin® 0, dpd) . (IV~23)
The metric given by (IV-21) or (IV-23) is called the Schwarzschild exterior solution of the Einstein
field equations. The solution is not valid inside the body, so that the apparent singularity in the
metric for r, = 2o does not really exist.

If we write out (IV~14) for the motion of a body of small mass in the metric {IV-21), we will
obtain Newton's equations of motion with a small correction Rk on the right-hand side. We then
suppose that this same correction applies to the Newtonian equations of motion of a planet with
non-negligible mass acted on by the gravitational attraction of the Sun and other planets and by
other forces, obtaining {III-4)., Of course, the rigorously correct procedure would be to derive
the equations of motion in a completely relativistic manner, with the equations for the comparison
of theory and observation also being derived according to the ger.eral theory of relativity. How-
ever, given-the limitations stated in Sec.I, we continue with the less rigorous procedure of using
the relativistic equations of motion of a planet of small mass in the gravitational field of the Sun
to correct the Newtonian equations of motion of a planet.

The coordinate system (t*, x,: R xi R xg )} could be changed very slightly and the equations of
motion of a particle of small mass would still have the appearance of the Newtonian equations of
motion with a small (but different) correction on the right-hand side. If we are to follow the plan
of correcting the Newtonian equations of motion, this correction should be obtained in the general
relativistic coordinate system which most closely fits the Newtonian coordinate system. The
only reason that the coordinate system (t*, x,:, x:, x_z) with metric (IV-21) could be this "best-
fitting" coordinate system is the apparent simplicity of the metric (IV-21).

In a coordinate system (t, xi, xz, x3) with flat metric (iV-iS), the d'Alembertian operator O
is defined on a function { by the equation

2 2
or=— 2L - 20 - a(axzf)z - a(axsf)z : (1V-24)

Note that Ot = 0, Ox3 = 0 (j = 4,2,3). The natural differential geometric generalization of the

d'Alembertian operator to a coordinate system (xo, xi, xz, x3) with metric ds2 = gwdxp' ® dx” is

2
0f = gpv 2 f - - g}‘wI‘ ‘Yu of (IV -25)
ax**ax s E)xy
where the summation on the Greek indices runs over9, 4, 2, 3‘T A coordinate system (xo, xi, xz, x3)
is harmonic if Ox™ =0 (hb=0,1,2,3). Given any coordinate system (xg, x,:, xé, x,‘::) and metric,

1, x?‘, x3) which is harmonic can, in general, be found. (We

a new coordinate system (xo,x
would have to find four independent solutions of the linear hyperbolic partial differential equa-
tion with nonconstant .oefficients Of = 0, which can be done because Cauchy's problem can
be solved for this type of partial differential equation.27) Suppose we are concerned with an
insular distribution of matter contained in a coordinate neighborhood. We may assume that
this coordinate neighborhood extends off to infinity, with the insular system being contained in
a spatially bounded part of the coordinate neightborhood. Then, Fock28 proves that if certain
natural conditions are satisfied by the metric at spatial infinity, a harmonic coordinate system
on the coordinate neighoorhood is defined uniquely up to a Lorentz transformation. These con-

ditions essentially state that the metric goes sufficiently fast to the flat space value (III-15) at

tSee, for example, Ref.26.

44




spatial infinity, and that no graviiational waves impinge on the insular system from the outside.
In the case of the isolated spherically symmetric body considered at the beginning of this

section, the harmonic coordinace system (t, xi, xz, x3) can be made unique up to a rotation of the

spatial axes by spfacifying that the world line followed by the center of the spherically symmetric

body is given by x'=0(i=1, 2, 3). In these harmonic coordinates, the metric tensor has com-

ponents
. (r—o 2 _
goo_(r+oz)c -
— o2 r+ o, o2 xixj
gij =—(1+ 7 6ij —(m) ) =3 (IV-26)

r

wnere a is given by (IV-22}. In the spherical coordinate system (t, r, 8, ¢), defined in terms

of (t, xi, xz, x3) by (IV-16), we havc29

2_ r—a 2.2 rta 2. 2 2 . 2 2 _
ds™ = r+a) cdt (r—oz) dr r + o) {de” +sin” 6dg¢") . (IV-27)

The relation between the (t,, r,,9,, ¢,) coordinate system of (IV-23) and the(t, r, ©, ¢) coordi-
nate system of (IV-27) is obviously given by

t,. =t , r*=r+oz

EX

0,06 , o¢.=9¢ (IV-28)
so that the transformation-between the (t,, x,:, x_zf, xi’) coordinate system of (IV-21) and the
(t, xi, x?', x3) coordinate system of (IV-26) is given by

te=t . xp=xU+ Y, i=423 . (IV-29)

'

The Schwarzschild metric has also been expressed in what are called isotropic coordinates.

In isotropic rectangular coordinates (f,i1, 22,23), the Schwarzschild metric has components

.2
_ _ (‘1 - ZF) c2 =0
€00 " 1 + _g)Z ’ oi
2T
= _ a4
gy = -+ )" 5y (IV-30)

while in isotropic spherical coordinates t,F 0, @), it is given by

o, 2
¢~ 73 5 si7
as? = —EE= ot — (1 + 2)* (aF” + F2aB” + T sin” Bdp’) (IV-31)
4+ ﬁ)

(see’Ref_. 30). Comparing (IV-23), (IV-28) and (IV-31), we see that
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\ 4
. —
- - f-:-*%:.—‘-» - .

t, =t t=t
2 - 2,—
) n= (452 T r= 1+ GRT (IV-32)
>
O, = 6 0=06
N Px= 9 ¢=9 J
S |
! which implies that
- te =1 t=1
_ ‘ (IV-33)
xp = ® (1 + &P =2t 2%, i=1,23

There are, of course, infinitely many other coordinate systems besides these three in which
the Schwarzschild meiric can be expressed, but these three are generally used in the literature.
We shall now derive the equations of motion of a particle of small mass in each of the coordinate
systems discussed above, even though we have reason to believe that the harmonic coordinates

are closest to the Newtonian coordinates.

First, we note that, by Ref. 29,

oo_ 1 r+a oi _
g =3 ‘;.—_-—&) ., g =0
c
- i 2 ybyd
g’ = TN [—Gij + (%) x_)Z(] (IV-34)
(1 + ?) r
by Ref. 24,
oo _ 1 ( Tx ) oi
= ,— | — , =0
Ex c2 r, —2o Bx
1]
< XX
ij _ 2 TET*E
g ==06..+t — (IV-35)
* ij  r, r,f
and, by (IV-30),
a2
—-00 _ 1 (1+2?) 501 _ ¢
T2 a2
¢’ (1~ -Z—F)
i Gi.
g = ————Jﬂ . (IV-36)
(1 + 7

Thus, by definition (IV-4), we have in the (t, xi, xz, x3) coordinate system that
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r°=0 , 1r2=0, rka=pk.yg
00 ij 0j jo

og S e 98
r°=r° ___1goo I rk -_1 E gkt 00
0j jo 2 %9 (e]o] 2

-
3

(IV-37)

with exactly similar equations holding in the starred and barred coordinate systems. Equation
(IV-14) for a geodesic then becomes

2 3 j
d't o dt dx
-— + 2 ' . —==—=—=0
dsz ? oj ds ds
J=2
A ok ad dd | 2
" L Ty as @ * Too G (1V-38)
s .o
i, j=1
Since
d_gdtd
ds ds dt
¢ _ a2, d% a4
dsz ds dtz dsz dt
the second equation in (IV-38) can be written
2k 3 i 4k
dx” , ¥ 1,k_<iLQ>c_J+rk+dt/ds — o
dtz (et ij dt dt (dt/ds)z dt
Now, by the first equation in (IV-38), we have
2 3 i
dt _ _,dt,2 o dx
G2 TG L To S
s .
j=1
so that we can finally write
3 . . 3
2.k i .3 k
d’x k dx* dx k dx dx? _
52 + ) Tis at at T Foo ~%27a1 LT o' ot ' (IV-39)
i, j=1 j=1

IExactly similar equations are valid in the starred and barred coordinate systems.
Using (IV-26), (IV-34) and (IV-37), vre¢ perform a simple calculation in the (t, xi, xz, x3)
coordinate system that gives
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. o_._a o
, oj (r+a)(r—a) r

’ @
c?‘:‘:k 1-7)

k a
T =
00 i 4+ g_)3
) r
. ) . k. j k
k.o [xké NN S V5 S 2-\—“-;-‘3- 4+ 1 . (IV -40)
ij = 3 l j oo, .0 jk ik v P
r r
Similarly, using (IV-21), (IV-35) and (IV-37), we find that in the (1, x_,:, \,2 x;:’) coordinate
system
= axi
%0 _ =
o (r, — Zo:)r,_%
aczwzk
I‘*k = * (1 - _2_(1_)
- 00 3 r,.
r.’ -~
&
%) ozx,},f x}k\{J 1
P 26; = > 2+ e . (IV-41)
] r;’ Y oo 1- T
Finalsy, using (IV-30), (IV-36) and (IV-37), we find that in the (i, X', %%, %) coordinate system
TO - ax)
0j

a oy =3
(1- 79 (1+ 32 F

a
=k _ acigk (1~ 33
oo = 3 o 7
r (1+ 2'1’)
=k _ a I, _
T o 3 (X éij X 6jk éik) (IV-42)

ij (i+—2—f)r

Formulas {IV-39) and (IV-40) show that the equations of motion of a small mass 1u the

(t, xi, xz, x3) coordinate system are
2.k k. .
d___xz + ____YM3X = 3% (IV-43)
dt r

where

3
L2 ¢
dx) S S PR o dx
(d" 1+%< 1+ 8 L dt

r
3 o 2.3
r A+ 0] e 1 v/ \e=1
. /3
dx ax ¢ dx
X [ZT i <Z x >] (IV-44)
£=1
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Simiiarly, formulas (IV-39) and (IV-41) show that the equations of motion of a particle of small

mass in the (t,, xé, xg, xg) ceordinate system are

dx,l.: 'ny}.f .
=+ = Rk (IV-45)
dt rg
where
k 3 3 k
ak . yMix 2 yM 2’1\ Z (dx* 2 dx,.\ > dx
# 5T 3T, T2 | P at,, W) |7 e &,
* " F =1 £=1 Ty
1 E 2 ‘”‘*\ “fk“ .
+ |2+ —2a Xy at )__E . (IV-406)
1=37/ V= T _“

Finally, formulas (IV- 39) and (IV-42) show that the equations of mction of a particle of small

mass in the (t, xi x2 X~) coordinate system are

_k _k
&, YUX_ . gk (IV-47)
dt F
where
& 3
=k _ymx® [ U7 oF Mt [k oy dﬁ')z
P 1+ 7] FP o+ L oo\dt
r 27 27 t=1
2
: S0\ -k
1 N = dX ) d% .
—2<1+(1_£)><Z % df)"_di ] (IV-48)
2% =1

Thus, using the fact that for small z
1

~ 1 Fnz
(1£2)"

we drop all terms in (IV-44), (IV-46) and (IV-48) which contain (a/r)2 or (a/r) (v/'c)2 as factors,

obtaining,
. 3 3
k £\2 k ?
k_ yMx" |4a _ 1 dx 4yM dx” £ dx V-
Rz 15 ~= Z(dt)}+"23 dt<zxdt> \V-49)
r L (&} cr
=1 £=1
k r 3 £\2 02 {
k. My |20 2 ) dx Z/ dx* + 2M dx Z oL dx*
*- 7 3 |t, " 2 dt,, % 2.3 dt, %
r. | C - * C l-,-
x 2_1 < 0_1
(IV-50)
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Rk yMzE 4a 1 ¥ dx + M dx” 5, <L 9% (IV-51)
'—3— Tz dt '3_3 at R
{=1 =1

Equations (IV-43), (IV-45) and (IV-47) are invariant under rotation of the coordinate axes.
From this it easily follows that the motion given by these equations lies in a plane in eaci of the
three coordinate systems.

By ccordinate transformations (IV-28), (IV-29), (IV-32) and (IV-33), the curves in the three
coordinate systems given by {IV-43), {IV-45) and (IV-47) are exactly similar, even though these
equations have dissimilar appearance. As is well known, these curves are ellipses with advanc-

ing pemhehons31 32,33

The expressions for the periods of these ellipses, in terms of the semi-
major axes of the ellipses, will vary in the different coordinate systems because of relations
(IV-28) and (IV-32).

We have two candidates for the relativity term in (III-4) and (III-12). Because of the har-
monic and isotropic criteria, and for the sake of definitiveress, we choose (IV-49) [or equiva-

lently (IV-51)] to be this term. In the notation of Sec,III-A, it is

3
k MRy [k [, & 4 (Qc_”
- o3 ps r o 2 dt
ps p =1
¢
<E xps_d—>l , k=1,2,3 (1V-52)

where we have multiplied {(IV-49) by a dimensionless constant Rf. If we perform a least-squares
analysis on the value of Rf and other parameters to fit theory and observation, Rf will converge
to the value 1 if the relativity correction belongs in the equations of motion, or to the value 0

if the Newtonian theory is correct. By (IV-22),

a=—5 (IV-53)

where c is the velocity of light at a large spatial distance from the Sun.

C. METHOD OF SOLVING THE PROBLEM OF THE MOTION OF A SYSTEM
OF MASSES IN GENERAL RELATIVITY

If we raise indices in the Einstein field equations (IV-7), we obtain

RM - 2 g™ R = —xTH (IV-F 3)
These equations are nonlinear and hyperbolic in the unknown functions g'w. The fact that they
are hyperbolic implies that gravitational waves can exist. 'Their nonlinearity allows us not only
to determine the potential g'w, but also the mass tensor Tw, i.e., the motion of the masses.

In all other field theories, such as Maxwell's for the electromagnetic field or Newton's for the
gravitational field, the field equations are linear and the equations for the motion of bodies in
the field are separate from and additional to the field equations. But in Einstein's theory, the
equations of motion are contained in the equations for the field.

The divergence of the left side of the Einstein field equations vanishes,
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pe 4 pwoo =
VAR =5 gPRy =0 . (IV-55)
(This was one of the attributes which led Einstein to choose this tensor for the left side of his
equation.) Thus, we have

q18Y

I adiX S g L S e (IV-56)
B axt or oR

The simultaneous solution of {IV-54) and (IV-56) will determine the field and the raotion of the

masses; of course, (IV-56) is a consequence of (IV-54).

1

. . . 0 2 .
To obtain an approximeslte expression for the mass tensor, let p{x ,x", x", x3) be (in some

sense} the invariant density of matter in the space-time universe. We suppose that

ThY dx" dx”

=p & & (IV-57)

where s is the proper time of the element of matter at the point (xo, xi, xz, x3). If the element
of matter is following a world line x" = x™(s), tken the defining property of s is

ax" dx”
gwds ds -1 - (IV-58)
If we imagine that we are concerned with a particle of small mass and small dimensions which
has negligible effect on the gravitational field, (IV-56) and (IV-57) imply that the particle follows
a time-like geodesic through the space-time universe.34 Thus, assumption (IV-14) is not really
an assumption, but is a consequence of the Einstein field equations.

The method of solving the field equations for the field and the motion of the masses is pre-~
sented by Fock,21 and by Infeld and Plebanski.35 The latter follow the work of Einstein, Infeld
and Hoffmann36 and assume that the masses are point singularities of the field, so that the mass
tensor is zero everywhere except along the world lines of the particles, where it is given by
delta functions. Fock assumes a continuous distribution of matter concentrated in a finite num-
ber of regions, so that the mass ‘ensor is differentiable everywhere, and is zero outside of the
finite number of regions. The methods used by Fock and by Infeld and Plebanski are approxi-
mation procedures and are essentially the same; Fock assumes that he is always working in a
harmonic coordinate system, while Infeld and Plebanski make supplementary coordinate condi-
tions at each step in the approximation.

To be specific, let us outline Fock's procedure with a continuous distribution of matter
concentrated in a finite number of regions. We first assume expression (IV-57) for the mass
tensor TH (at a later stage in the approximation, we can assume a more sophisticated form of
the mass tensor using the fact that the bodies are elastic). Then we solve (IV-54) for the gravi-
tational potential g’w to first order in v/c, obtaining (IV-19) with some additional terms of the
form dt @ dxi times quantities involving the velocity of the matter generating the field. This is
called the Newtonian approximation. We use this solution for the potential to write equations
(IV-56) for the mass tensor TM to first order in v/c. The solution of these equations is used
to solve (IV-54) for the gravitational potential g"w to second order in v/c. This solution for the
potential is then used to write equations (IV-56) for the mass tensor T™ {0 second order in v/c.
We could, in principle, continue this procedure indefinitely, but the sulutions and equations in
this post-Newtonian approximation are accurate enough for our purposes.

51

o




At whatever stage we stop in the approximation procedure, we will have found in a specific
coordinate system a system of second order ordinary-differential equations for the motions of
the masses, and an expression for the gravitational potential in terms of the motions of musses,

2, x3), t can be made the independent variable of the equations

If ihe coordinate system is (¢, xi, X
of moiion. Numerical integration of the equations of motion will determine ephemerides 1n this
specific coordinate systern of the planets as functions of t. The.relation between the coordinate
time t and the proper time 7 of an atomic clock on the surface of the Earth following a world
line v(s) (s = t} is given by (IV-12). This integral can be evaluated because we know the gravi-
tational potential in our specific coordinate system. Knowing the general relativistic theory of
radar and optical observaiions of a planet, we can comp: te the theoretical values of observations
made at given instants of atomic time. Then, making a least-squares adjustment to the initial
conditions and parameters appearing in the theory of motion, we can determine the general
relativisiic ephemerides which best fit observation.

This report is concerned with Newtonian theory and any general relativistic corrections
that are easily obtained. The procedure outlined above can and should be documented and

pursued; this we hope to do, following Fock?‘1 and Infeld and Plebanski.35
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V. EQUATIONS FOR PARTIAL DERIVATIVES OF POSITION AND VELOCITY
) WITH RESPECT TO INITIAL CONDITIONS AND PARAMETERS

A. PLANET CASE )
Let (x )15' cees xés) denote the components of position and velocity of a planet relative to the
Sun. Equation (III-4) for the motion of the planet can be written in the form

N

dxk

psS . . k+3

dt ‘ns N

dxk+3 M k -
ps =—YM g+ P ps+9k+Rk.Lsk+_LFk> k=14,2,3 . (V-1)
dt M r ’ M p
ps P
k __k k+3 _ _k+3 _
xps = xops , xps = xcps when t = to )

Let a be a parameter upon which the motion of the planet depends, such as an initial condition,
a planetary mass, the second harnmionic of tne Sun, etc. Differentiating system (V-1) with respect
to «, we see that the quantities (axpis/aa, cees ax;’s/aa) satisfy the differential equations system

N

/ k+3
d(ax Joa) ; axps
dt T
d(axk+3/8°‘) My g w L ax;s axk
—r— =M (1+M;)r_3" N R
ps ps £=1
M\ x a(yM_) xX am o/ Mg
_ {14+ P\ pS S  _ oM _PBS k=1,2,3 . (V=2)
Ms r3 da g r3 8oz
ps ps
L0028 aRE es e (1 Lk
o o o o Mp P
k k k+3 k+3
8__xps = onps Pops = Pops whent =t
da da ! du da (o] J
We have axops/"a =0(£=1,...,6) for all parameters « which are not initial conditions.
The value of 8x£ps/aoz for an initial condmon a depends on the specific initial condition. For
example, if we let o = xgps, then 8x /8a = éij' We shall choose the initial conditions as
(8 1, cey 66) =(a,e,i,Q,w,! ), the orbxtal elements of the elliptic orbit osculating to the true
Ol‘blt of the planet at the mmal time t because we will be integrating differential equations
system (V-2) for 8x /aﬂJ (jok =1,...,6) by means of Encke's method as explained in Sec. VI-A.
Also, we are going to use the results of the integration to make a least- squares correction to
the initial conditions, and it is more meaningful physically to adjust (ﬁp, R )3 ) than to adjust
1 6 1 .
(x ops’ " ops)' The relation between B.,...,B8.)and (x ops’ " opc) is ngen in Secs. II-B

and II-C, while the values of ax /3[2J are given in formulas (I1-28) to (II-33) with t = t .




If we desire to take account of a possible time variation of the gravitational constant, we
might suppose that

YM = (YM() [1+A(t—t )] (V-3)

where A is a parameter to be determined by comparing theory with observation. We then have

2(yM)
oA

= (M), (t—t) (V-4)

with the a(yMS)/aoz term in (V-2) being zero for ail other parameters ol

The term 8(Mp/Ms)/6a in (V-2) is zero for all parameters «, except for « = Mp/Ms’ in
which case it takes the value 1,

To determine the term ank/aa in (V-2), we differentiate (IJI-3) with respect to «, obtaining

N k 3 2 k
Lk M., 3x. ax %
08" _ 1 ip £ ""ps _ “ps - -
sa = Mg ), M’i_3<‘r‘2' L Y s~ wa) 0 k=123 (v=3)
=1 p Yip =1

if a is not the mass of a perturbing planet. Here, we have to assume that

k
ox,
-2 -0
Ja
k=14,2,3 (V-6)
k k k k
X, X, 2 2
p _ s Pps s
oa Jda Ja da
since it is supposed that (xj1s’ szs’ xj3q) are given as definite functions of time. If a is the mass

of some perturbing planet, o = Mi/Ms’ then we must add the following term to (V-5):

< K xk

yMs_lg-——3 , k=123 . (V-7)
Tip  Tis

If @« = A, we must add this term to (V-5):

N k Xk
(YMg), (t—t) ), —1<J§? > . k=1,2,3 (V-8)
j=1 ip rjs

If a is an initial condition for planet p, assurn.; fion (V-6) that 9x. /aa is zero relative to
9x S/aa is certainly justified. However, if o is some parameter other than aa initial condition,
axk/aoz could be comparable or even larger than ax K /8a so that expression (V-5) for aszk/aa
would be incorrect in nature. For use in PEP, (V- :>) is exactly correct when the perturbing
planet input magnetic tape used in evaluating (III-3) is kept the same between iterations, but not
when the ephemerides on the perturbing planet tape are replaced by the results of just completed

T We do not consider (yM,),, as a parameter to be adjusted because it is the usual practice in celestial mechanics
to set v(yMy), = 0.01720209895, which defines the unit of length (the Astronomical Unit) once the unit of time
has been spec:fled
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integrations for use in the next iteration. In any case, because (V-5) contains the factor (M /M ),
it is less important than (V-7) or the first term on the right of the second equation in (V-2).
Since we only need approximate values for the partial derivatives in the iterative process of
finding least-squares corrections to the various parameters, assumption (V-6) is thus reasonable.
From an operational standpoint, it is necessary.

it is prebably sufficiently accurate tc suppose that aRk/aa = 0 and ask/aa = 0, except when
o= Rf or a = S,/Rs2 , respectively. However, for the sake of completeness, we shall evaluate
these quantities. First, differentiating (IV-52) with respect to @, we see that

. k 7 2 k+3
8Rk _ ('yMs) Rf axps o vps 4 - - axps
om - T3 Ba \*r-""7)*" 2 s Vps! oa
r ps c c P ps
ps
3 TN 2
_xK Z oy ?i‘_ﬁ_s /160: _ Vps + 2 E <2 axps
ps ps d& \‘2‘3 c?‘rz CZ ps 9@
1=1 pS ps 1=4
k+3 o 3 Yy, 3 243
_4xps 3 ps vps) E xl pPs _ E £ axps
CZ r2 ps 3@ ps duw
ps 2=1 2=1
£
ax
__Ps 143 = -
t 5% ps )” , k=4,2,3 (V-9)
where
6
2 _ 2.2
Vps = Ll
£1=4
3
- 2243 _
rps Vps' E xpsxps . (V-10)
=1

We have denoted the parameter with which we differentiate (IV~52) by @ so that there will be no
confusion with the gravitational radius of the Sun « appearing in this formula. If @ = R, we

f}
must add the following term to (V-9): . '
™s |,k g2 1 2 4k+3( v ) k=1,2,3 Vedd)
3 xps r 2 _T" r " Vs : T ’ ( !
r ps
ps
If @ = A, we must add this term to (V-9):
k+3
(yM_) (t—-t )R 4x ]
s’o o "t .k, a 1 2 ps_ > = 4 - _
3 ps( p 2 p)+—-2—(rps vps) , k=14,2,3 . (V-12)
Tos ps c J

Second, differentiating (III-50) with respect to o, we see that
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et

e
YM (1 + ) ) K k 3 £
ask _ s (is_)z Sz {.L ( Xps. _ *Xps 2 a‘})ﬁ\
da 2 r 2 ir da Z ps o«
rps ps Rs ps ps £=1 /
xK 1
x (22 g %)+§% <15gr_f’_s-3c3k>‘ﬂ . k=1,2,3 (V-13)
DS J
where, by (III-51),
2 3 i
Ix X . 9X
ag ps _ pS i ps ~
ja Tt y C31<_ 2 *bs T3a (V-14)
PS p=4 rps i=1
If = SZ/R:, we must add the following term to (V-13):
M (
— [.’E (125 2 _ %)*— 3gC3k] . k=1,2,3 (V-15)
Tps
If o= Mp/Ms’ we must add this term to (V-13):
M, (R\2 S, x;‘s 3
52 (2) 2|2 &Aooy, | . k=123 (V-16)
rps ps Rs
If @ = A, we must add this term to (V-13);
Mp
M), (=t) (1 + M_) Ro\2 S, [%05 45 2 3
A ; (r ) 212 B P, |, k=123 . (v
rps ps Rs ps

B. EARTH-MOON CASE

6 1
Let (x xcs) and (xme’ ceny

cs’

x:;l e) denote the components of position and velocity of the

Earth-Moon barycenter relative to the Sun, and of the Moon relative to the Earth, respectively.

These components will be considered as primary quantities determined by integrating the equa-

tions of motion
1

) and (xms' e,

1
Sun (Xes’

S) are determined from them by formulas (III-6).

The components of position and velocity of the Earth and Moon relative to the

Equations

(111-12) for the mot1ons of the Earth-Moon barycenter and the Moon can be written in the form

(v-18)

k 3
dxcs _ xk+3
dt = “cs
k+3 k k
dxCS / MC Me xes Mm me
a - MO, TS ™, 2
AN s e r.s/t k=123
+rbk+Rk+S +—(F +F )
k __k k+3 _ _k+3 _
Xes " Xoes * Xes T Xpeg Whents to J
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dxme - xk+3
dt me
k43 k
x> M x
me - _ym, 55 e +;'3k+\1fk+1»1k+(—M1 F
s Il m
k _ .k K+3 _ _ k+3 _
me ~ *ome ' *me ~ *ome when t = to

Let o be some parameter upon which the motions of the Earth~-Moon barycenter and of the
Moon depend. Differentiating systems (V-18) and (V-19; with respect to «, we see that the

e 1 6 1
quantities (axcs/aa, cees axcs/aa) and (8xme/8a, .
systems

K k+3 '
d(ox /o) | g
dt T b«
k+3 k k
dlox, g /a_a) = —yM (1 + &> 2 (Ve Xes + Ym ms
dt s Ms da c r3 MC r3
es ms
k k
M, Xes . M, *ms (1 . &) a(yM,)
Mr r 3 MC r3 Ms dc
< Tes ms k=
- BM /M) gk LT
L4 s aa aa aa aa
) 1 k k
+ 5 [M (F + Fm)]
k k k+3 k+3
s - _8xocs s = Pocs when 't =
da dba ’ o da ’
k k+3 ‘
d(ox o /90) X o
dt Y
k+3 k 3 ! .
d(axme/aa) - M_c 14 3xme E xf 8xme - %
—g— = "M, M, ——r3 iy me da oa
me me £=1
k k
Mo e My oM /M) gk |
M_ 3 da s T3 da de
sr r
me me
k k
oV oH 8( 1 -k 1 k)
+ + * g\ Fm - F
e 9¢ " Ba\M_ "m M e
k k k+3 k+3
9% e _ Xome me = —2M€  whent=t
da B« ’ da dor °
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(V-20)

=14,2,3 . (V-21)
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Let (B:, ves B:) and (pél, cees ﬂg) be the orbital elements of the elliptic orbits osculating
at the initial time to the true orbits of the Earth-Moon barycenter around the Sun and of the
Moon around the Earth, respectively. Since we shall be integrating the differential equations

for the partial derivatives with respect to initial conditions by means of Encke's method, we

choose the- m1t1a1 conditions with respect to wh1ch we take partial derivatives to be (B - ﬁé))
and (B e B ) The initial conditions ax /E)ﬁJ and E)x(l:me/a,(?;l (3, k ., 6) are then
determmed by the elliptic orbit formulas of Sec II-D. Of course, we have
% =0
apl
b b k=1,...,6 (V-22)
ome
—_— =0
6 |

Further, the initial conditions of (V-20) and (V-21) are zero for any parameter a not an initial
condition,
We divide the initial conditions and parameters appearing in the theories of motion of the

Earth-Moon barycenter and of the Moon into the following three classes:

Initial osculating orbital elements of orbit 8 1 8 6)‘
of Earth-Moon barycenter about the Sun c
Mass of jth perturbing planet M. = _I\ﬁ
Mass of Sun js = M
S (V-23)
Relativity factor Rf
- SZ
Second harmonic of the Sun S, = -R—
Initial osculating orbital elements of orbit 8 1 8 6) (V-24)
of the Moor about the Earth m " m
. M 3
Mass of Earth + Mooh M = =S
Mass of Sun es ~ Mg
M .
Mass of Mcon M . _m¢ (V-25)
Mass of Earth + Moon me M,
Time variation factor for gravitational A
constant J

For parameters a of the form (V-23), we shall assume that axk /aoz = 0, and for (V-24) that
8xk /Ba = 0. We make no such assumptions concerning parameters (V-25). Comparing the
magmtude of the A term in (III-13) given by (III-32) with the magnitude of the perturbing planet
effects in Table II, we see that it is indeed reasonable to assume that ax /8[3J = 0, since we
must assume that @k is mdependent of the initial conditions for the perturbmg planets The
assumption that axk /813J 0 is not precisely true, but according to Table I{I these derivatives
are much smaller than the axk /3[33 and we have to make some such assumption tt make our

problem manageable. Comparmg Tables II and III, we see that il is reasonable to assume that
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k . . . k
the 8xme/8MJ.s are zero relative to the axcs/BMjs.
of the least-squares correction to the various parameters, only the approximately exact values
of the partial derivatives with respect to these parameters are needed nat the exact values))
For parameters of the type (V-23) for which we assume ax

give
k k
axes - axcs
ow o
k = 1: Zv 3 (V-Zé)
k k
axms _ axcs
da ~ da
We now determine the quantities on the right side of (V-20) for these parameters «. First, of
course, B(yMS)/aa = 0 and (8/0a) (Mc/Ms) = 0. Next, we have
k k k ; 3 i
iﬂges+mems_axcs _Iill_e__g_+Mm 1 _3zaxcs
da M r3 Mc r3 Y Mc r3 Mc r_3 oo
es ms es ms £=1
k_ ¢ k 4
M x X M_x" x
e "es"es , .'m “ms ms _
x<M T+ o 3 > , k=123 (V-27)
c r c r

es ms

The expressions for 6Rk/aoz and ask/aa are given in formulas (V-9) through (V-17), with p re-

" placed by c. Finally, differentiating (III-9) with respect to o, we see that

N K2
k M M
, %" _ e Mje¥je 2
! o - 'yMs Z < _J + _J_§J_>
- . s (o] I‘
3:1 Je
ax M M \
| cs (_e 1, _m_1_ k=1,23 (V-28)
! da <Mc r> Mg 3
le jm
; where we have made assumptions analogous to those of (V~6), namely,
| 3
i ax.k
.7._J_§ =0
2a
k k k k
6Xje _ axjs _ 0% _ _axcs > k=14,2,3 (V-29)
da ~ o« 9a ~ o«
k k k k
8xjm ) axjs _ 8xms _ _8xcs
da o« - T
If a-= Mi/Ms’ we must add the following term to expression (V-28) for 00X/ 3a:
k k k
M X, M_ x. X,
¢ Tie ¢ Tim Tis
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For the initial conditions By -+ 8,) of (V-24), we assume ihat axcs/aﬁm = 0. By (IlI-6},
this implies that

ax:s _ _11\:I/Im axrl:}e
i i
9B, c B [ k=123 (V-31)
ale;s M, ?_x_::ﬁ
apd. M, o) |

We now determine the quantities on the right of (V=21) for o = 8 xJn First, of course,
aly M)/ 31 = 0 and (8/98 rJn ) (M_/MJ) = 0. Next, differentiating (Il-11) with respect to BrJn and
using (V-31), we see that

3 £ k £ k 2
aBX _ 9% me /Mm Zoses . Mo *ms¥ins
a_‘j"”Ms3Zaj(M 5 M. 5
Bm =1 Bm ¢ I'es ¢ Trs
k
ox M M
——me( m 1 , _e 1 , k=1,2,3 (V-32)
833 Mc r3 c r3
m. es ms’ 4
N 3 2 k_£ k ¢
Q\I_Ik__ M Z 1\_/[1 3 ¥ e (Mm *ie¥ie + & Jim7im
a.ej ™s Vg aﬂj Mo 2 My 2
m i=1 £=1 m ie im
k
9x M M
- “J‘e<ﬁm-—13- +M£%—>] , k=123 . (V-33)
aﬁm ¢ Tie € Tim
In (V-33) we have assumed that
8xiks ]
7 -0
8ﬁm
k k k k
ox. 0x. ox M__ 9x
€ . _15 _ _es . .Mf.n me § k=4,2,3 . (V-34)
J J J 3
GBm apm 8ﬁm c aﬁ;n
k k k k
im _ s _ Pms __Me Mme
] ] i M 3
a‘Bm 6Bm aﬁm ¢ Sﬁm,

Finally, differentiating (III-79) with respect to rJn , we see that

k k 3
6Hk _ YMg & ( Re )2 J_Z_ 1 <8xme _ 5Xme ) <!
i T .2 M r 2 |r j 2 4 “me
By Thme S me Re me \ 98 Coe 224

£ k
ax - 15x%
X me) (:_l_2§ cos®® — %) 4+ 9{zos6) ( M€ cosO — 3A3k)]

aﬁfn apri‘n Tme

G
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3 v o, { k 3 1
+ (Rm)2 5 o Ll [ 1 (axme i > me t e
‘ r 2 =2 I |r i 2 me ~, _j
me MmRm i=2 3 l me 6Bm Tme f=1 WrJn
k
9D, [415x R_\3 J
) x(—D %)+__jl<rmeD1_3B1k]+(re)—%
8Bm me me Re
. k k 3 2
: ax 6x 9x
X 1 me oe 2 xJZ me (E cos3e— g cos 9)
e 8[33 r2 me ,.i 2 2
m me f£=1 “m
’ k
‘"’(°°Se)<r (12 cos®o - L2) - 154, cosG)} . k=1,2,3 (V-35)
Z)BJ me
where, by (IT1I-80),
3 oxt 43 h | °
d{cos®) _ 14 Z A me _ “me Z x
j - r >34 ] 2 me J
a‘Bm me pzq 6ﬁm “me h=1 %
, { i=2,3. (V-36)
3 i L 3 h
Z)Di _ 1 Z B /-Ei_x_Illg X e Z xh 6xme>
anld r i b} 2 me j
oBm me =4 aBm me h=1 aﬁm J
We now consider the parameters Mcs = Mc/Ms and Mmc = Mm/Mc. Regarding these as
independent parameters, formulas (III-6) imply that
(M /M) (M /M)
oM . o1 M. T (V-37)
cs mc
a(M_ /M) aM, /M)
M =0 —M - ! (V-38)
cs mc
(M, /M) oM, /M)
o C° oM ! (V-39)
cs mc
k 4 k)
axes axcs Mm mee
oM oM M _aM
s c cs
¢ | k=1,2,3 (V-40)
k k k
2 S _ 90X g . Eﬁé 0% 1o
Mo Mg Mg aMcs J
k k k )
%es s _ Mn me _xk
oM . M, M, OM_ . me
r k=1,2,3 (V-41)
k k k
axms - axcs + ll/l_g axme xk
aMmc oM ¢ M, Z)Mmc me |
o
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The quantities on the right-hand sides of {V-20) and (V-21) for @ = M__ are as follows. First,

cS
of course, diyMy)/aM o = 0 and (a/aMCS) (MC/MS) = 1. Next, we have

k k k .
J.(M_e Yes , Mm xﬂ§>_ Pes (&.L . M_m_i_>
oM M 3 M .3 /T M M, 3 M 3
cs ¢ reg C Tl cs \""¢ r oo c s
3 2 k - k £
-3 Z axc (E Xes¥es + Mm Xmsxms> " _l\k Mm
oM M 5 ML 5 M M
2=1 cs c res c s c c
k 3 £
0x 0x
% me 1 _ 1 +3 Z me
Z)Mcs r3 r3 - ths
ms es 2=1 e
xk \:)Z xk x)Z
X< es5 es _ ms5 ms)] , k=1,2,3 ] (V-42)
Pes s /1

The expressions for E)Rk/aMcs and 8Sk/8McS are given in formulas (V-9) through (V-17), with
p replaced by c. Differentiating (III-9) with respect to M cs? We see that

N 3 2 k_1 kg
6<I>k_ VIS _I\fl l,z Z axcs /% x]i':xje + Mm Ajmxjm
oM __ ~ s Mg 1° M\ M, T3 R
j=1 2=4 je jm
k ,, k
_es (Me 4, Mo >+M_e_Mm [8"me< L4 >
oM h\ 3 M 3 I M oM 3 3
cs\ ¢ IJe c rjm ¢c ¢ cs rJe rjm
3 axfne x.l;x.le x.l:nxfem
-3 ) B, —J—.J--rD ——J;-;J— , k=1,2,3 (V-43)
£=1 je jm
where we have assumed that
ax.ks ]
12 =9
aMcs
k k k k k
e | s Mes | ¥os My el k=123 (V-44)
9 cs 9 cs aMcs aMcs Mc 8Mcs
k k k k k
8x.m _ 8xjs _ axms L 8xcs _ i_VI_e 3xme
al;i-cs M s M g Mg M, M o |

Differentiating ({IlI-11) with respect to Mcs’ we see that
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k 3 .4 k £ k ¢
. aB" = wM [ o%cs 4 4\ _, ¥ Y*cs {Tes™es ms”ms
aMos Y SlaMCS r3 r3 = aMcs r -
’ es ms £=1 es s
k 3 £ k £
_ axme <Mm i " I_Vl;e_ 1 )+ 3 E axme <% Xes>‘e_§
oM M, 3 M 3 oM M 5
cs e rog c rms/ £=1 cs S
k 2
M x_ X
v —mss—t-n—sﬂ , k=1,2,3 (V-45)
¢ Tms
N k , £
k M ox ox
ov cS 1 % (1]
v - Mg ZMJ[Z)M <_§"—3>"3 L 5w
cs S cs \r. r. _ cS
=1 je jm £=1
k_1£ k ¢ 2k
X<x3ex3e _ im Jm\ e /Mm 1. & i >
5 5 T M M3 ' M__3
rje rjm cs \ c rJe c er
3 £ k £ k £
ox M. x. x. M ox, x,
me ([ _m “jeje ., e jmjm - -
+3 ) T <M SELE J__5L>] , k=1,23 (V-46)
221 cs c rJ.e c rjm

where we have used (V-44) in deriving (V-46). Let Hé( denote the right side of {(V-35), with
partia. derivatives with respect to g rJn replaced by partial derivatives with respect to Mcc.
Then, diftcrentiating (III-79) with respect to Mcs’ we see that

' 2uk

k
_ Kk H _
3_1-\7[;; = HC + T(Mc Ms) , k=14,2,3 . (V-47)

The quantities on the right-hand sides of (V-20) and (V-21) for o = Mmc are as follows,

First, of course, a(yMs)/aMm o =0, and (8/8Mmc) (MC/MS) = 0, Next, we have

k k k k k
9 Il/l_e ie_s " Mm *ms - *ms _ *es + axcs _y!;
aM M 3 M 3 /7\V.3 3 oM ‘me
C rog r r

me ¢ Tms ms Tes me
3 0
X .I\ie.L.*._Mm __1 -~ 3 Z dxc“'-_}‘k
: Mc r3 Mc r3 aMmc me
es ms £=1
k_4 k 2 | Lk
X<_1yl_e ¥es¥es + My *ms ms>+ & ﬁ“ﬂ [8kme
M 5 M 5 M oM
c rog c T c ¢ mc
3 £ k £ k £
ax /x" x X X
x< - >+ 3) e « RSt mssms>] . k=1,2,3.(V-48)
by
Tms Yes 2=1 me Las Tms /4
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The expressions for aRk/aMmc and 2)Sk/8Mmc are given in formulas (V-9) through (V-47), with

p replaced by c. Differentiating (III-9) with respect to Mmc, we see that

N k k 3 J4
k M. X, X, ax
¢~ _ _l(,’m__JE cs_!\
oM __ = Mg % M \'r“’T o R BM__ " *me
=1 SW\Fym Ty 2=1 m /
- k1 k £ no K
>\/_.g Xo Xio . M, Xmejm\)_/"x s _k _1\& 1
\Mc r. M, 5 \oM e me/ \M, .3
je jm 7 je
k 30, 4
N %_1__>+ Me M {axme ( 1 _L\)_, 5 me
M 3 M M oM 3 3 < oM
c rjm c ¢ mc rje fﬁn/ j=d mc
k_2 k 1
X ( i€ 1€ Jmst>H , k=1,2,3
Tje Tjm
where we have assumed that
ax.ks
—MJ— =0
9 me
k k k kK k
3xje ) axjs _ X oq _ 0 o i Mo 9xX o Lok S Kk =
aMmc aMmc aMmc 8Mmé M aN}mc me
k k k k k
8xjm _ 8xjs _ axms o 8xcs _._I\ilE axme +xk
aMmc aMmc aMmc aMmc Mc aMmc me J

Differentiating (III-14) with respect to Mmc’ we see that

k
k 9x
BIZ:AB = YMg {(E)MCS - xrie) <L3 - g )- 3
me me r £

es m f=1 me
k 4 k ¢ k
x<xes es ms ms>_ e (Mm 1, Me 4 >
M M 3 M, 3
Tes “ms me ¢ Tes ¢ Tms
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N k 3 £
awK =yM_ Y, M; cs —xk\\ 4 _ 4 ), ¥ s
oM = TVs Mg |\8M, o " Fmej \ 13 T3 oM
=1 je jm £=1
i k £ k
—x? xJexJe _ xjm}i'm _ axme Mm i, & 1
me 5 e oM .\ M, ';3' c r3
je im je im/
3 axfne Mm x.l;x.ze Me x.l:nx.lm
+3 ) e (_mjede, e gmimll oy,
2=1 me ¢ ro c r,
J jm

where we have used (V-50) in deriving (V-52).
see that 8Hk/aM

placed by partial demvatwes with respect to Mm ¢

Differentiating (III-79) with respect to M
1s given-by (V-35), witn partial derivatives with respect to BJ being re- |

3 (V-52)

me’ Ve

We now consider the time variation parameter A in the gravitational constant as given in

{V-3). Formulas (III-6) imply that
k k k )
E)xes _ axcs Mm axme
X~ oA Mc dA
| k=1,2,3
k k
E)xms _ axcs _/I_ me
X T ax M oA )

The quantities on the right sides of (V-20) and (V-21) for a@ = X are as follows.

d(yM, )/ A is gwen by (V-4) and (8/0x) (M /M ) = 0. Next, we have that (8/02) (v, /M ) (x

/r

being replaced by partial derivatives with respect to 2.

(wm/wc> (x
Mcs
6Sk/67\ are given in formulas (V-9) through (V-17), with p replaced by c.
the right-hand side of (V-43), with the partial derivatives with respect to M
by partial derivatives with respect to A, differentiation of (III-9) gives

(V-53)

First, of course,

3
es/ res) *

] is given by the mght s1de of (V-42) with partial derivatives w1th respect to
The expressions for dR /87\ and

If we let (b}\ denote

being replaced

ad)k k e k Mm x'l;n xjks
S = ey (M), (-t ) EMJ c_%- M—c;%_‘p‘ , k=1,2,3 . (V-54)
je jm js
If we let B;‘{ and \P;{ denote the right-hand sides of (V-45) and (V-46), respectively, with the

partial derivatives with respect to M cs being replaced by partial derivatives with respect to 2,

differentiation of (III-11) gives

oBX _ _k : Xp
-6_-=B>\+(YMS)0(t_to)<_3_—;3—> , k=1,2,3
es ms
N
%-:wi‘uyms)o(t—to) 5w <—l3- _33-> k=123
=1

(V-55)

(V-56) -

If we let H,lf denote the right-hand side of (V-35), with partial derivatives with respect to Br:'in
being replaced by partial derivatives with respect to A, differentiation of (III-79) gives
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oHF _ o x, Mg, (t—t) )

A - Hy + ‘YMS H , k=1,2,3 (V-57)
We have not derived the differential equations satisfied by the partial derivatives of the posi-
tion and velocity of the Moon with respect to the higher harmonics of the gravitational potentials

of the Earth and Moon, because the gravitational potential of the Earth has been determined quite
accurately from the motion of artificial Earth satellites, and the gravitational potential of the

Moon will be determined quite accurately in the near future from the motion of artificial lunar
satellites.
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VI. ENCKE'S EQUATIONS OF MOTION AND ENCKE'S EQUATIONS
FOR PARTIAL DERIVATIVES WITH RESPECT TO INITIAL CONDITIONS

A. PLANET CASE

Let (x;s, cens x6s) denote the components <1>f position and velocity of a planet relative to the
Sun, satisfying {(V-1) with initial conditions()(xop g ) and with the gravitational constant
'yIV[ being given by (V-3). Let (yps .. p .) be the solutxons of the equations in (1I-63) with

('yM ) [1+ (M /M )], and with initial conditions (x ops’ " ops) The quantities ‘
(y RERE yps) are the components of position and velocity in the elliptic orbit oscularving to the

true orbit of the planet at tiie initial time. Let

k __k k
‘E =X _yps ’

ps ps k=1,...,6 . (VI-1)

Subtracting (II-63) from (V-1), we see that the quantities (gpis’ cees glfs) satisfy the system of

equations
k

Clgps _ , k+3

at - ‘Eps

k+3 k

d¢ M 3
—_bs_ . Py A L),k _’ps
at = Mgl (1 t Ms) [(;;3 3 )¥ps T3
ps ps ps k=1,2,3 (VI-2)
k
x5 k 1 .k
—A(t—t) +Q + R +S +m—Fp
ps P
k _ ,k+3 _ -
gps = §ps =0 whent-= to
3.2 o 1i 6 .
where pp (y ) + (y ) + (yps) . The quantities (yps’ v, yps) are known as functions
of time from the formulas in Sec.lI-B, so that if we numerically integrate (VI-2) to find
(5 1 ey gps), the posmon and velocity of the planet (x R xps) can be determined from (VI-1).
Let axk /aBJ (i, k ., 6) denote the partial derlvatives of the position and velocity of

the planet relauxe to the Sun with respect to the initial osculating orbital elements ([3 R, Bs) =
(a,e, i, 2, w, ) These quantities satlsfy differential equations (V-2) with initial con(ntions

k /8[33 (3, k=1,...,6). Let ay /8{3J (i, k ., 6) be the solutions of differential equa-
t1onps (II-64}. with these same 1mt1a1 condltlons and with p = (yM ) {1+ (M /M )] We define

axk ayk
pK = PS _7PS k=, ..,6 . (VI-3)
A BBJ 3BJ -
p p

Subtracting (II-64) from (V-2), we sce that

e et e
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s

k Y
dn - k3
dt Pj
k+3 koo gk
dn . M ay n .
- ) 1 _ 1 pPs _ 'Pj
a— = M), (1 ' Ms) [( S p3 /) el p3
pps [ p ps
3 .4 k ¢ k ¢ k3
43 3 pr? *ps*ps _ Yps¥ps + pg 5 xd gk
aﬁ‘] r Ps 1‘5 PS"PJ k=1,2,3
=1 %p ps ps ps £=1 R 6 . (VI-4)
PR .
k 3 2 k
. A(t—f(_)_)(sxps A s 31‘93)]
3 2 ' “ps ) ]
rps I‘ps £=1 aﬁp z)Bp
L2008 aRM asf . o (_1_ Fk)
- T = ] M
apd  apd  apd gl \Mp P
Bp Bo OBy OB, TP
k _ k3 _ -
npj =My = 0 whent=t J

The quantities 8y§s/8ﬂg are known as functionskof time from the formulas in Sec. II-D, so that
if we numerically integrate (VI-4) to find the npj’ the partial derivatives of thi position and
velocity of the planet with respect to the initial osculating orbital elements 8xps/a[3!g can be de-
termined from (VI-3).

If the quantities 5;2 get too large as time progresses, a new osculating elliptic orbit can be
chosen and the integration of system (VI-2) can commence again with initial conditions zero. If
we are also integrating system (VI-4) and desire to change Encke orbits, the following procedure
must be followed. Let (31, .. .,36) be the osculating elliptic orbital elements at the initial time
to; let (x,g, e xf) and 8x}:/aﬁj (j,k = 1,..., 6) be the position, velocity and partial derivatives
with respect to initial conditions at the time t, at which we wish to change Encke orbits. These
quantities are known fromthe numerical integration of the equations of motion and the equations for
the partial derivatives with respect to initial conditions from time t to time {,. Let (,B,:‘, B ﬁ:)
be the osculating elliptic orbital elements at time t, determinec from the formulas in Sec. II-C.
Integration of (VI-2) and (VI-4) with initial conditions zero from time t, to time t determines the
position and velocity of the planet (xi, ceny x6) and the partial derivatives of position and velocity
with respect to the orbital elements at time t,, 8xk/8[3:g (jyk=1,...,6). Then, to determine the

partial derivatives with respect to the orbital elements at time t,» we must use the relation

6 6 i,
k 9%y 8B\ 4. K
Qx_j= Z( —J_—:>-"—X—£ . bhk=1,...,6 (VI-5)
aBY oy \ioq 9B 0xy/ 9By

where the matrix aﬂ,f/ax,; is determined from the formulas in Sec. Ii-E.
The elliptic orbit position and velocity in the new Encke orbit osculating to the true orbit at
time t, satisfy differential equations (II-63) with p = (yMs)* (1 + Mp/Ms), where

(YM), = (YMQ) 4 +Alt, =t )] . (VI-6)
68
T e SR i = i) ettt v b Ciaanan . SNERNENG s =~T‘“"-




Wsu—w - i
» . Sewtof > TNl o3
, S

Thus, the factor (yMs)o in (VI-2) with initial conditions zero at time t, must be replaced by
('yMS)*, and the term A(t — to) replaced by a term G(t — t, ) satisfying

YM

g = (YM), [1 +Glt —t,)] (VI-7)

which implies that

A

G = THA, — )

(VI-8)

Exactly similar comments apply to (VI-4).

Ao

N e e

B. EARTH-MOON CASE

6

1 6 1 R s .
Let (xcs’ ey xcs) and (xme’ v, xme) denote the components of position and velocity of the

Earth-Moon barycenter relative to the Sun and of the Moon relative to the Earth, satisfying !

ely rres eps 1 & 1 6
(V-18) and (V-19) with initial conditions (xocs' e xocs) and (xome' e xome)'
the gravitational constant yM, is given by {V-3). Let(y és, ey é’s) and (yr?rl et yr(;l o) denote

We assumne that

the components of position and velocity in the elliptic orbits osculating at the initial time to the

1

true orbits of the Earth-Moon barycenter and of the Moon. The quantities (y . yfs) are the

cs’ "
solutions of the equations in (II-63) with p = (‘yMs)o 1+ (MC/MS)] and wilh initial conditions
1 ) - <y 1 . o .
(xocs’ . ‘{ocs)’ while the quantities (yme’ cens yr(r)le) are th: solutions of {II-63) with
= . . .y o s 1
0 ('yMS)o (MC/MS) and with initial conditions (xome' PN xome)' Let
£ k _ xk _ k
es - *es TVes
k=1,...,6 . . {VI-9)
k __k k J
Sme = *me " Yme

Subtracting (II-63) from (V-18) and (V-19), we see that the quantities (§c15’ e écés) and
1 :
(&

, grér’le) satisfy the system of equations

e
k 3
o ke3
at - Scs
k+3
Les = (yM_) 1+1VI_Q _L_&_L +&‘.__1_ k
dt T¥slo M 3 M, 3 "M, 3 Yes
Pes es ms’
(Me 14 Mm 4 Y,k MMy 1) ok
M, .3 "M, 73 )fes* M, M\, 3 3 )¥me
€ Tes “ms es ms b k= 1,2,3 (VI-10)
k k
M_ x M x . ]
At -t ) (8 288 4 —m Tms ) gk, giy gk
o Mcr3 Mc r3
es ms
1 k k
far Fe #Fy)
c
k _ ,k+3 _ -
Ecs"gcs =0 whent-’co )
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dt £ me
k+3 k k
dg me M Mc i 1 k me _ me
at = Mg = =5 |Yme— 3~ Mt— )3
Pme Tme Trme roedt k=1,2,3  (VI-14)

m Me €
; ef =g EP o0 whent=t ‘
- o _ J 1.2 2 2 32 s
where Pes = & (y ) + (y ) + (y ) and Prme = (yme) + (y ) + (yme) . The quantities
(yc‘_, F ycs) and (y .. 6 ) are known as functions of time from the formulas m Sec.I1I-B
so that, if we numer 1ca11y mtegrate {VI-10) and (VI-11) to find (g s gcs) and (§me .o >r(r)1e)'
the position and velocity of the Earth-Moon barycenter and of the Moon (xcs’ ees X cés) and
= 1 6 .
(xme’ xme) can be determined from (VI-9).

k i k 3 . - . . . -
Let axcs/apg: and axme/aﬁli]n (juk = 1, ..., 6) denote the partial derivatives of the position

and velocity of the Earth Moon barycenter and of the Moon with respect to the initial osculating

orbital elements (B yeees B ) and (B R ¢4 ). These quantities satisfy differential equations
(V-’O) and (V- 21) w1th m1t1a1 condmons axk /86J and axé{me/aﬁJ G, k=1,...,6). Let
3y, /8[3J and ay /8[33 (G, k ., 6) be the solutlons of differential equatlons (I1-64) with

these same m1t1al condltlons and with W= ('yMs)o [1+ (Mc/Ms)] and p = (yMS)0 (Mc/Ms)’ re-
spectively. We define

8l op)
g, k=1,...,6 . (VI-12)
T * Eséég - EEE%E
ﬁm aBm,
.
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Subtracting (I1-64) from (V-20) and (V-21), we see that

k h'
dnc' _ k3
a "¢
! k+3
dn . M M
cj = (yM.) - c) 1 e1+ m 1
at slo ' " M 3 ~\M M. 3
S Pes C Tes ¢ Tms
ayX /M M
% Yes __<_g 1, _m_1 nk
j M, 3 M 3 cj
8Bc C reg C Tos
3 5 ] k 12 M xk %! M
-3 Z Yes | YesYes _[—_ees"es , “m
a[sj p5 Mc rs Mc
£=1 c cs es
k ¢ 3 k ¢
X msxms + 3 z £ Me Xesxes Mm
r‘5 cs Mc r5 Mc k=1,2,3
ms e=1 es [ §=1,...,6  (VI-13)
k _¢ 3 ¢
X X ox M
x mss ms>+x(t—t )[3 cjs <-—e
“ms (=1 98¢ ¢
k ¢ k ¢ k
) x _es_es M *ms*ms s i\/[_g 1
rs Mc rs aﬂj c r3
es ms c es
¢ M k k k
4 —m é >“ N a«»j + 8Rj + BSJ_
¢ Ths Z)Bc ch 8[30
+ 2 [ML (FE+ Frl;)]
8[33 c
c
n(l:j = né{:B =0 whent = to
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dﬂmi 'Im-
d: dt
k+3 k k p
d_a_an- = (YM_) _M_.c[ 1 _ 1 ayme _ Imj
t s’o Ms 3 r3 aBJ r3
L Pme me m me

3 3 [4 k xt k [4
Z Yme ’<xme me ymeyme>

t 3 : -
j 5 5
t=1 8ﬁm Tme Pme
k 3 k k=1,2,3
. Xme T oxl ! ME—t0) (3% e [ j=4,...,6 .  (VI-14)
X ul +
I‘5 me 'me r3 r2
me (=1 me me
3 { k
% Z xl axme _ axme)] + 6Bk + 8\Ilk
me j J ) i
£=1 aﬁm 8'Bm aﬁm aﬁm
A G ( 1 ok _ _1_Fk)
gl op) My om Mg e
k _ k3 _ _
nmj—nmj =0 whent—to J

The quantities ayé{s/aﬁg and ayr}:)e/aﬁxiq are known as functions of time from the formulas in

Sec. II-D so that, if we numerically integrate (VI-13) and (VI-14) to find the né{j and nrl:lj’

find the partial derivatives of position and velocity with respect to initial osculating orbital ele-

we can

ments for the Earth-Moon barycenter and for the Moon from formulas (VI-12).

The method of changing Encke orbits for the Earth-Moon barycenter and for the Moon integra-
tions is the same as discussed at the end of Sec. VI-A. It will be necessary to change Encke orbits
more often in the case of the Moon than in the case of the Earth-Moon barycenter.
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APPENDIX A

PRECESSION-NUTATION OF THE EARTH

The notation 1950.0 denotes the beginning of the Besselian year, which is the instant near

the beginning of the calendar year 1950 when the right ascension of the mean Sun was exactly

18M40™,

Od.923 Ephemeris Time (see Ref. 5).

Let (x1 %2

In more conveniional notation, 1950.0 is thus J.E.D. 2433282.423 or 1950 January

) X3) be a rectangular coordinate system whose X1 axis points toward the mean

vernal equinox of 1950.0, whose X3-axis points toward the mean north pole of 1950.0, and whose

Xz-axis completes the right-hand system. In more concise language, we say that (Xi, Xz, X3)

is a rectangular coordinate system referred to the mean equinox and equator of 1950.0
2 »

the coordinate system in which we are going to integrale the equations of motion. Let (xi, X, xj)

This is

be a coordinate system referred to the true equinox and equator of date with the same origin as '

the (x

) XZ, X3) coordinate system. The xi-axis points toward the true vernal equinox of date,

the x3-axis points toward the true north poie of date, and the xz-axis completes the right-hand

system. The relation between the (xi, X

X =

2

3
Z Afjxl
=1 J

where the orthogonal matrix A is given by

A= L NyPy

i,j=1,2,3
=1

) x3) and (Xi, XZ, X3) coordinate systems is

(A-1)

(A-2)

with N and P being the nutation and precession matrices, respectively. The matrix A appears
in formulas (III-55) and (III-79).
We now give the established expressions for the precession and nutation.

Ref. 37 in defining the angles

%

Z

<

2304%948T + 0'.'302’1“2 + 0'.‘0179'1‘3

23041948T + 11093T2 + 010192T>

2

20041255T — 0U426T2 — 010446T>

First, we follow

(A-3)

where T is measured in tropical centuries of 36524.21988 ephemeris days from the epoch 1959.0

(J.E.D. 2433282.423) to the instant of interest.

given by?’8
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Then the precession matrix at this instant is
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S

P. =cos el .
11 0050 cos O cosz smgo sinz

P, == singo cosS O cosz — cos Co sinz

12
P13=—sin0 cosz
P21 = COS §o cos O sinz + sin ;o cosz
P22 = — sin go cos O sinz + cos Zo cosz
P23=—sin0 sinz
P31 = €OoS go sin©
P32 = — sin g;o sin©
P33= cos ©

]
The mean obliquily of the ecliptic is 3

€ = 23°27'08%26 — 46"845T — 0'.'0059T2 + 0'.’0018'1T3

(A-4)

(A-5)

where T is measured in Julian centuries of 36525 ephemeris days from the epoch 1900 January
0.5 E.T. = J.E.D. 2415020.0 to the.instant of interest. Let Ay and A€ be the nutations in longitude

and obliquity, respectively, as given by the series in Ref. 40.

is then

€=¢€_+ Ac
o
- . o 41
Finally, the nutation matrix is given by

I SR

— AY cose —AYP sine
1 — A€
A€ 1

The true obliquity of the ecliptic

(A-6)

(A-7)

NM Niz N13 1
N = N21 N22 N23 = AP cose
_N31 N:,’2 N33_ AY sine
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APPENDIX B
ROTATION AND PHYSICAL LIBRATION OF THE MOON

Let (yi, yz, y3) be the coordinate system with origin at the center of mass of the Moon whose
coordinate axes point along the principal axes of inertia of the Moon. The y3-axis points along
the axis of rotation of the Moon, while the yi-axis always points in the general direction of the
Earth, ‘he period of rotation of the Moon about its center of mass being the same as its orbiial
period. The yz-axis completes the right-hand system, so that the (yi, yz) plane is the plane of
the Moon's equator. In this coordinate system, ihe second harmonic of the gravitational potential
of the Moon has the form (III-70).

Let (ui, uz, u3) be the coordinate system with origin at the center of mass of the Moor: re-
ferred to the mean equinox and ecliptic of date, and suppose thai ¢ is the longitude of the de-
scending node of the lunar equator on the ecliptic of date measured from the mean equinox of
date, that © is the inclination of the lunar equator on the ecliptic of date, and that ¢ is the angu-
lar distance of the positive part of the yi-axis of the coordinate system (yi, yz, y3) from the
descending node of the lunar equator. Then (II-1) and (II-2), with @ = §, i = -0 and w = 0, imply

that

3 3
j 2
yJ = Z Ujlu
=1
i=1,2,3 (B-1)
3
) !
uw = E UlJy
f=1 /

where

U“ = cosyP cosy — sinyP sing cos 6

U12 = siny cos¢ + cosyP sing cos O

U13 = — sing sin®
U21 =—cosy singp — siny cosg cosO
U22 =—giny sing + cos P cos¢ cos O

U,3=—cosgp sin®

U31 = —siny sin©
U32 = cosy sin©
U:,)3 = cos© (B--2)

Let (x1, x2, x3) be the coordinate system with origin at the center of mass of the Moon re-
ferred to the mean equinox and equator (of the Earth) of date. Let € be the mean inclinaticn

of the ecliptic as given in (A-5). Then we can write
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J -
w = E lext
=1
r j=1,2,3 (B-3)
3
J_ L
X = E V“.u
* 5 f=1 J
: where
VM V12 v13 1 0 0
V21 V22 V23 = 0 cos eo smeo . (B-4)
V31 V32 V33 0 —smeo coseo

Combining (B-1) and (B-3), we see that

~

3
j 2
yJ = Z lex
£=1

¢ j=1,2, 3 (B-5)
3
J T+ £
= ) ley
1=1 Iy
where
3
Wj[ = z Ujkvkl » JJ L= 11 2) 3 (B-6)
k=1
so that, by (B-4), we have
Wip = Uy
sz = sz cose€ — Uj3 sin€ i=1,2,3 . (B-7)

WJ.3 = sz sin €o + Uj3 cos Eo

Let (Xi, XZ, X3) be the coordinate system with origin at the center of mass of the Moon re-
ferred to the mean equinox and equator (of the Earth) of 1950.0, the reference system in which
we are going to integrate the equations of motion. Then we have

3 3\
x) = P. Xf
M
=1
y 3=1,2,3 (B-8)

3

J _ ¢

XY = z P!ijJ
=1
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where (le) is the precession matrix of (A-4). Combining (B-6) and (B-8), we have

3

3
y= 1 Bx

=1
b j=1,2,3 (B-92)

3

J_ 2

X = Z ijy
=1 J

where

3

Bj, = Y ijPk2 . §, t=1,2,3 . (B-10)
k=1

This is the matrix B which appears in (II[-75) and (III-79).

Let ( be the mean longitude of the Moon, measured in the ecliptic from the mean equinox
of date to the mean ascending node of the lunar orbit and then along the orbit. Let Q be the
longitude of the mean ascending node of the lunar orbit on the ecliptic measured from the mean

equinox of date. Finally, let I be the inclination of the mean lunar equator to the ecliptic. Then

the angles ¥, 6, ¢ of formulas (B-2) are?3
P=Q+0
O=1+p
¢ =180° + (( - Q) + (r = 0) (B-11)

where ¢, p and T are the physical librations in node, inclination and longitude, respectively.

We now determine the quantities on the right side of (B-11). First, the inclination of the

mean lunar equator on the ecliptic 1544’45

I=1°32'120" = 1953889
= 0.0268587 radian (B-12)

Next, according to Ref. :6, we have

Q = 2592483275 — 0°0529539222d
+ 10557 x 10" 124% + 500 x 107203
( - = 11°250889 + 13°2293504490d
— 20407 x 107 129% — 124 x 107203 (B-13)

where d is the number of days that have elapsed from J.E.D. 2415020.0. Finally, the physical

libration of the Moon is47

T=—12"9 sing — 0"3 sin2¢ + 65%2 sin{'
+ 9"7 sin(2F — 2¢) + 14 sin(2F — 2D) + 25 sin(D — )
—0"6 sin(2D — 22+ £') — 7%3 sin (2D — 20)
—3"0 sin(2D ~ ¢} — 0"4 sin2D + 7"6 sinQ (B-14)
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p=—106" cost+ 35" cos(2F — ¢) — 11" cos2F

) — 3" cos(2F —2D) - 2" cos(2D—-1¢) ; (B-15)
I{t — o) = 408" sin¢— 35" sin(2F — ¢) + 11" sin2F
+ 3" sin(2F — 2D) + 2" sin(2D - ) (B-16)
\? , where [ is given by (B-12) measured in radians, where we have taken the parameter f{ in Ref. 47

- tobe f= 0.73, and where the arguments ¢, {', IF and D are given in Ref. 40 as functions of time.
The relations between the arguments ¢, ¢', F and D, and the arguments g, g', w and w' in Ref. 47
are given by48

(=g g=1
[l=gl g':ﬂ'
(B-17)
D=g'—-g'+ w— o' w=F-—¢
F=g+w w=F~D-1¢
T
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APPENDIX C
ORIENTATION OF THE SUN

According to Ref. 49, we have

Inclination of solar equator to ecliptic I 7° 157

Longitude of ascending node of solar (C-1)

equator on ecliptic Q(t)

73°40' + 5025t

where t is the time in years from 1850. Thus, in 1950.0, the longitude of the ascending node i
of the solar equator on the ecliptic was

szs = 75°3175 = 75°0625 . (C-2)

Now the rate of the precession of the equinox backward along the ecliptic is 50"25 per year. Since v
formulas (C-1) were derived from observations, we can conclude that no precession of the solar '
equator along the ecliptic has been observed. If the Sun had an equatorial bulge, such a precession
would arise from the gravitational action of the planets. Thus, the fact that nc precession of
the solar equator has been observed puts an upper limit on the possible magnitude of the second
harmonic of the Sun's gravitational potential. However, the planetary torques acting on such a
solar equatorial bulge would be so small that this upper limit is not much of a restriction.
Let (xi, x2, x3) be the coordinate system with origin at the center of mass of the Sun whose
x3-axis points toward the north pole of the Sun, whose xi—axis .S the intersection of the equator
of the Sun and the mean ecliptic of 1950.0, and whose xz-axis completes the right-hand system.
Let (ui, u2
to the mean equinox and ecliptic of 1950.0. Then the results of Sec. II-A imply that

s u3) be the coordinate system with origin at the center of mass of the Sun referred

1 1 2 .
X = u cos SZS+ u stS
2 _ 1 . 2 3 .
X~ =-u sts cosIs+u cosQS cosIs+u smIs
3 1 . . 2 . 3
x" =u sts smIs—u cosQS smIs+u cosIs . (C-3)

Let (Xi, XZ, X3) be the coordinate system with origin at the center of mass of the Sun referred
2 w3y and (x1, %%, x7)
coordinate systems is given by (B~ 3), with €y = € being the mean inclination of the ecliptic in

1950.0. Combining (C-3) and (B-3), we see that

to the mean equinox and equator of 1950.0. The relation between the (u1, u

x1 = X1 cos Qs r X2 sinSZS COS € + X3 sian sin€
x2 =X sin@_ cosI_+ Xz(cos Q cosl cos&=—sinl_sin¥®)
S S s s s

+ X3(cos SZs cos IS sin€ + sin IS cos €)

3 1 . . 2 . - .=
x =X sts s1nIS—X (cost smIscose+cosIs sin€)

3 . .- -
+ X7(—cos Qs sin Is sin€ + cos Is cos€) . (C-4)
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Finally, comparing (II[-47) and (C-4), we see that the quantities C3k (k = 41, 2, 3) appearing
in (III-50) are

C31 = smszs sin Is
C32 = — coS QS sin IS COS € — COS Is sin€
Cz5 =—cos Qs sinlg sin€ + cos IS cose€ . (C-5)
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